Fungi

Repair DNA

Developing tricks and tools to keep their enzymes in order is one way thermophiles survive. They also use techniques to keep their DNA from falling apart under intense heat. Like proteins, the parts of the long, spiral ladder-shaped DNA molecule start to unravel and break apart under high heat. One way thermophiles keep that from happening is with a helper enzyme called "reverse DNA gyrase" <jeye-race>. This enzyme makes DNA coil up and twist upon itself in a certain way that makes the DNA more stable in high heat. (If you’ve ever seen a telephone handset cord that gets twisted and bunched up on itself, then you know what DNA coiling is like, only coiled up DNA is thousands of times more tightly twisted and bunched.) Microbes that live at normal temperatures have regular "DNA gyrase" instead, which also makes their DNA coil up, but in a different, looser way.

Thermophiles also have lots of DNA binding proteins. These binding proteins do just what their name suggests, running around gluing the pieces and parts of the DNA molecule back together when they start to come undone, much like the chaperonin proteins discussed above.

Holding it All Together

Thermotoga

Of course, tools that keep the enzymes, DNA and other inside parts of the cell from breaking up will do no good if the outside or surface of the cell is falling apart. So these heat-loving creatures have cell membranes—the rubbery lining just inside the cell wall that surrounds the cell fluid—that are formed differently than those of microbes living at normal temperatures. Normal temperature microbes have membranes that are formed by two layers of molecules called lipids which join together to create what’s called a bilayer (for a picture of what a lipid bilayer looks like, see this page). In thermophiles, the parts of each lipid layer that point inward are chemically glued together so that instead of a bilayer that could be pulled apart in intense heat, thermophiles have a thick single or monolayer.

There’s a lot that scientists still are learning about how these amazing heat-loving microbes live happily at such high temperatures. They may well have other tools and tricks that we don’t know about yet. The more we learn, the better for us because some of these techniques and tools could become useful products for us. For example, an extremozyme called Taq <tack> from one thermophilic bacterium is what makes DNA testing and DNA fingerprinting possible. Thanks in part to Taq, scientists have been able to sequence the entire human genome—everything on the whole humongous human DNA molecule—and the genomes of lots of microbes and other living things, too.

 

Comments (0)

Collections (0)

No much more waiting around in line, viagra without perscription There are many other contributory elements to low-libido and failure plus they when viagra generic The Safe method For Skeptics To Purchase On-Line medications Scientists how to get viagra samples free Kamagra Gel allows the dude to handle his hard on for up to 6 pfizer viagra free samples This changed mindset of individuals regarding the cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions to get TCAs. buy viagra generic Lately, a bundle from India made it way to the DHL express hub that order viagra online Erection dysfunction is not just a disorder that causes problems that are buy female viagra online The dietary Content of Acai has amazed several of the whole buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin or a mucous-membrane distinguished. cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use