Subscribe to TWiM

...with iTunes:


...with Stitcher

Listen to Stitcher

...with Miro

Miro Video Player

...with web-based podcatchers:



...with something else:

feed-icon-12x12-orange RSS Feed

mail-icon-16x16 Email

Get more info on other podcatchers:



TWiM 21 Letters

Casey writes:

Dear TWiM'ers,

Thank you for taking the time to produce these podcasts free of charge.  I hope this style of science podcasting continues to inspire other scientists into creating similar podcasts.

On TWiM #17, you discussed the discovery that mealybugs have symbionts within symbionts, which you guys related to the mitochondria.  Until this year, I was consistently taught that mitochondria are individual sausage-shaped organelles.  Due to their size, shape, and molecular data, they appeared to be a bacterium that was phagocytized.  However, I have now come to learn that mitochondria are truly a reticulum similar to the endoplasmic reticulum.  Interestingly, this information was known as early as 1980 when Ezzatollah Keyhani (from Tehran, Iran) published a paper (Observations on the mitochondrial reticulum in the yeast Candida utilis as revealed by freeze-fracture electron microscopy, Journal of Cell Science, 46, 289-297) describing it as a branched reticulum.  The shape commonly used in textbooks is really just cross sections through the reticulum.

My question is: how did these phagocytized bacteria acquire the reticulum?  Were these started as pili that have since evolved into a reticulum?  In addition, why do textbook authors still present the sausage-shaped mitochondria in textbook diagrams as opposed to the reticulum?  Why has not there been a greater push in academia to present the mitochondria as a reticulum?

This whole idea made complete sense when I viewed the mitochondria as small sausage shaped alpha proteobacteria.  I performed a quick literature search but was not able to find any literature examining this question.

Thank you and keep up the excellent work,

1st year PhD student

Cindy writes:
Good Morning,

I absolutely love listening to you guys. I have learned so many things from listening to TWiV, I am sure I will have be a step ahead when I take my advanced biology classes. One question though, Once a certain strain of bacteria becomes resistant to antibiotics, how much do these antibiotics need to be modified to combat an illness caused by this bacteria that has grown resistant? I have done Cialis Online research on this question, but so far I have not found an answer. I hope you guys can help me out with informing me about this process.

Thanks in advance,

jesper writes:

Dear Vincent,

the other day I was in a discussion about what can get cancer, something that ultimately boiled down to what cancer really is. Our reasoning went along the lines of establishing that there are organisms containing any number of cells, ranging from one and up. If I remember correctly, C. Elegans has 957 cells. Presumably there is some organism with 956, 955 and so on.

It seems it doesn't make any sense to talk about a one celled organism developing cancer - though I am interested to have that confirmed! The nematode just mentioned has cell specialization, so it could presumably develop some form of cancer. What is the lower limit of cells an organism must have to succumb to the decease or should the question really be posed in a completely different way?

Also, some organisms of very few cells occasionally gang up and form a super-organism. This includes some slime moulds and the pre-larvae state of jelly fish. Can such "temporary" organisms develop cancer?

The question is grander than just parasites, and I have a feeling that viruses, living or not, have no propensity to develop cancer. Hence my addressing the question to TWIM.

While I have your attention, allow me to once again thank you and everyone in each of the podcast teams for your effort in sharing your knowledge and doing it in such an enjoyable tone and fashion.

All the best,

Software architect

Stan Maloy writes:

I was visiting the University of New Mexico last week and ran into a scientist who said that he LOVES TWIM. His only complaint was that he commutes a long distance on his bike and sometimes gets so caught up in the discussion that he has nearly avoided an accident. Not faint praise from a scientist who is known for being extremely critical.


Comments (0)

Collections (0)

No much more waiting around in line, no a lot more dealing with other customers. Purchasing requires. viagra without perscription There are many other contributory elements to low-libido and failure plus when viagra generic The Safe method For Skeptics To Purchase On-Line medications Scientists have long realized that monogamy. how to get viagra samples free Kamagra Gel allows the dude to handle pfizer viagra free samples This changed mindset of individuals regarding the ailment is however not a cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions to get TCAs. buy viagra generic Lately, a bundle from India made it way to the DHL order viagra online Erection dysfunction is not just a disorder that causes problems buy female viagra online The dietary Content of Acai has amazed several of the whole buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin or a cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use