Inscribѐse al Mundo de los Microbios

...con iTunes:

iTunes

..con Miro

Miro Video Player

...con web-based podcatchers:

ngsub1

add2netvibes

addtomyyahoo4

google-add

pageflakes

...con otra cosa:

feed-icon-12x12-orange View RSS Feed

mail-icon-16x16 Email

Obtenga más información sobre otros podcatchers:

badge_juice


Mundo de los Microbios

Sobre Mundo de los Microbios

El Mundo de los Microbios es un programa educativo que consta de podcasts semanales dirigidos a mejorar la comprension y apreciacion del rol vital que los microorganismos juegan en nuestro planeta y promover la microbiologia.

El Mundo de los Microbios produce 52 programas unicos anualmente que resaltan los procesos de descubrimiento, cambios historicos en la investigacion, asi como una variedad de carreras cientificas en la industria, academia y el gobierno.

Cada episodio de PodCast incluye segmentos con cientificos de vanguardia y es revisado por un panel de cientificos con peritaje en diferentes campos de investigacion para asegurar la confiabilidad del contenido.

Mundo de los Microbios - Episodio 74

Unable to embed Rapid1Pixelout audio player. Please double check that:  1)You have the latest version of Adobe Flash Player.  2)This web page does not have any fatal Javascript errors.  3)The audio-player.js file of Rapid1Pixelout has been included.

A continuación: comunidades microbianas en la zona de permafrost del polo norte; la miel de manuka como inhibidor del Staphylococcus aureus resistente a la meticilina (MRSA); el MRSA en lugares públicos; y biorreactores en la tierra.

Comunidades microbianas en la zona de permafrost del polo norte

Puede que Canadá no se parezca al espacio exterior pero su región norte congelada tiene algunas cosas en común con Marte. Actualmente los científicos están aprovechando las similitudes entre Marte y el ártico canadiense para estudiar qué clase de vida podría existir en el planeta rojo.

Tullis Onstott, profesor de la Universidad de Princeton, estudia las comunidades de microorganismos que viven bajo la superficie del ártico. Él y su grupo están investigando rocas y agua de las profundidades para ver qué clase de microbios sobreviven en este ambiente extremo.

Onstott dice que el azufre parece ser una importante moneda metabólica en los ambientes profundos y fríos, suministrando una pista de lo que podría ser biológicamente importante en Marte.

En el futuro, indica Onstott, su laboratorio examinará los mecanismos por los que estos microbios árticos intercambian el azufre entre sí para producir energía.


La miel de manuka como inhibidor del Staphylococcus aureus resistente a la meticilina (MRSA)

La miel ha sido utilizada desde la antigüedad para curar las heridas. Pero ahora una clase particular ha superado pruebas científicas rigurosas y demostrado su capacidad como agente antimicrobiano.

Rose Cooper, profesora del Institute Cardiff de la Universidad de Gales, dice que se denomina miel de manuka por el arbusto de cuyas flores comen las abejas que la producen.
Cooper explica que el arbusto crece muy bien en Nueva Zelanda, tan bien que en cierta medida era una molestia. Pero eso fue antes de que se hallaran los beneficios de la miel de manuka.

La microbióloga Cooper y su colaboradora, la estudiante de posgrado Rowena Jenkins, han descubierto que la miel de manuka parece bloquear la división celular del rebelde y peligroso microbio conocido como MRSA o Staphylococcus aureus resistente a la meticilina. La miel ha sido ya incorporada a vendajes y pomadas para tratar infecciones de piel por MRSA.

Cooper comenta que esta clase de preparaciones para cuidar heridas ha estado disponible en el Reino Unido desde hace más de tres años, y que en algunos casos han tenido éxito erradican do de las heridas el MRSA.

Ella y su colaboradora Jenkins piensan proseguir con sus estudios para averiguar exactamente cuál de los seiscientos compuestos de la miel de manuka le confiere tanto poder para combatir los microorganismos.

El MRSA en lugares públicos

El Staphylococcus aureus resistente a la meticilina ha recibido gran atención últimamente, y por una buena razón. En los Estados Unidos cada año se tratan a cerca de trescientas mil personas infectadas de MRSA y casi una de veinte muere. Jonathan Sexton, posgraduado de la Universidad de Arizona en Tucson, cuenta como él y sus colaboradores buscaron el MRSA en superficies que pudieran transmitir los patógenos al hombre.

Explica que utilizó escobillones estériles para recoger muestras de despachos, aviones, trenes, autobuses, aseos públicos y casi todo aquello con lo que la gente suele tener contacto.

Afirma que analizó más de dos mil quinientas muestras, encontrando MRSA en todos los metros, autobuses, trenes y aviones que sometió a ensayo.

En los despachos, los ordenadores y teléfonos fueron los lugares y objetos portadores más frecuentes del MRSA. Según Sexton, estos resultados resaltan la necesidad de ser cuidadosos con la higiene. Lave sus manos a menudo y vigile la limpieza de las superficies del hogar que toque a menudo, tales como teclados, teléfonos y picaportes.

Biorreactores en la tierra.

Si eres como la mayoría de la gente no le darás mayor importancia a la tierra. Sin embargo el suelo es algo más que un terreno sobre el que caminar; es también un ecosistema vivo que respira, rebosante de microorganismos que están realizando algunas tareas cruciales para la vida del planeta.

Peter Groffman es un investigador senior del instituto para estudios de ecosistemas en Millbrook, New York. Dice que los microbios del suelo degradan la materia orgánica – hojas muertas, animales muertos y otros materiales que caen en la tierra.

Afirma que esto es algo fundamental porque si no el mundo se llenaría de materia orgánica. Los microorganismos del suelo descomponen y reciclan los nutrientes que se encuentran en ella.

Destaca que los microbios del suelo forman ecosistemas complejos con diferentes clases de bacterias, predadores microbianos e incluso virus, y las diferentes clases de microorganismos influyen en la comunidad por distintos mecanismos.

Pero señala que a los científicos no les interesa un seguimiento  pormenorizado de todos los microorganismos del suelo. A menudo es suficiente con determinar sólo lo que entra y sale del suelo, tratando a las comunidades complejas de microbios del suelo como si fueran biorreactores caja-negra, que incorporan materia orgánica y producen dióxido de carbono y nutrientes.

microbianas, permafrost, staphylococcus, aureus, resistente, meticilina, mrsa, biorreactores

 

Direct Download: MdlM74 (.mp3 | 6 megs | 6.5 min.)

La traducción al español ha sido una gentileza de la Sociedad Española de Microbiología, www.semicro.es.

Mundo de los Microbios - Episodio 73

Unable to embed Rapid1Pixelout audio player. Please double check that:  1)You have the latest version of Adobe Flash Player.  2)This web page does not have any fatal Javascript errors.  3)The audio-player.js file of Rapid1Pixelout has been included.

A continuación: alucinaciones producidas por antifúngicos; probióticos y Escherichia coli; biología sintética; y esponjas oceánicas.

Alucinaciones producidas por antifúngicos

El fármaco variconazol es un compuesto ampliamente utilizado para combatir infecciones fúngicas que tienden a padecer personas con el sistema inmune debilitado. Actualmente un equipo de las National Institutes of Health (NIH) informa de un hecho extraño en relación con los efectos secundarios de este producto: alucinaciones.

Dimitrios Zonios, miembro del equipo, dice que estas alucinaciones son diferentes a las de los enfermos psiquiátricos o a las de consumidores de drogas, que se sienten aturdidos por sus visiones. En su lugar los enfermos con alucinaciones producidas por el variconazol están completamente lúcidos.

De acuerdo con Zonios, los afectados por los efectos secundarios no están confusos y comprenden perfectamente lo que está ocurriendo.

Asegura que un sujeto sometido al estudio informó haber visto un “wookie” – sí, uno de aquellos individuos melenudos de la Guerra de las Galaxias. Otros vieron objetos voladores, escenas de Montana y New York City u oyeron música. Comoquiera que los enfermos sabían que sus alucinaciones no eran reales, dice Zonios, en general no estaban preocupados y a menudo incluso se divertían.

El estudio también demostró que alrededor del doce por ciento de los enfermos experimentan este efecto secundario. Y como hasta ahora han tomado el antifúngico alrededor de trece millones de individuos se infiere que en los hospitales ha habido mucha más movida de la que los médicos han notado.

Probióticos y Escherichia coli

El tubo digestivo aloja más de la mitad de los setenta trillones de células del cuerpo humano. Los probióticos son microorganismos vivos que ayudan a mantener a todas esas células en un orden armonioso de acuerdo a bases regulares. Actualmente una nueva investigación demuestra que los probióticos también representan una gran promesa para el tratamiento de las infecciones gastrointestinales originadas por Escherichia coli y Salmonella.

E. coli O157H7 es una bacteria peligrosa, un patógeno transmitido por los alimentos que puede causar diarrea sanguinolenta e incluso fallo renal. Los nuevos tratamientos para E. coli incluyen el uso de bacterias probióticas. Una razón de ello es el impacto que los probióticos tienen sobre la toxina shiga. Las toxinas shiga son los venenos más potentes en el arsenal de E. coli. Pero se debilitan en presencia de probióticos.

Magdalena Kostrynska, investigadora en agricultura y alimentos de origen agrícola de Guelph, Ontario, dice que cuando se cultivan conjuntamente probioticos y E. coli  O157H7 se inhibe la producción de la toxina shiga 2.
El trabajo de Kostrynska está contribuyendo a aumentar  el conjunto de pruebas que apoyan la terapia probiótica.

Biología sintética

Puede que en el futuro los ordenadores no estén fabricados con componentes electrónicos sino con bacterias modificadas. El ingeniero Richard Kitney, de Imperial College, Londres, es un pionero en este campo emergente. Dice que a diferencia de los delicados y recargados dispositivos actuales, estas “maquinas vivientes” pueden sobrevivir en cualquier lugar donde exista vida.

Kitney afirma que los sensores de base biológica capaces de soportar altas presiones, niveles bajos de iluminación y otras fuerzas naturales pueden implantarse en el fondo del océano. Los sensores obtienen energía del medio ambiente que los rodea, lo que según Kitney sólo puede conseguirse si se utilizan dispositivos de base biológica.

Señala que el desafío actual es inventar piezas estandarizadas y fiables de estos dispositivos de modo que los ingenieros puedan cogerlas de la estantería cuando quieran fabricar algo. Los investigadores han ingeniado ya algunas partes de ordenador esenciales, insertando ADN modificado en células de E. coli.

Kitney dice que en un futuro muchas de estas células modificadas podrían unirse para fabricar calculadoras, ordenadores, dispositivos médicos e incluso coches y aviones ultra-eficaces.

Esponjas oceánicas

Se sabe que hay bacterias que viven en las esponjas de su fregadero pero las bacterias también viven dentro de las esponjas encontradas en el océano. Los científicos estiman que las bacterias representan más de la mitad del peso corporal de algunas esponjas marinas vivas.

En una sola especie de esponja pueden encontrase del orden de cincuenta tipos de bacterias. Y Detner Sipkema, profesor de la Universidad de California en Berkeley, señala que muchas de esas bacterias producen compuestos que podrían dar lugar a nuevos fármacos.

Sipkema afirma que químicos de productos naturales de todo el mundo han aislado compuestos de esponjas marinas con propiedades anticancerosas y antivirales.

Pero para obtener los compuestos producidos por las bacterias de las esponjas, los científicos tienen que salvar un obstáculo importante – cultivarlas en el laboratorio.

En general, afirma Sipkema, se estima que sólo alrededor del uno por ciento de las bacterias simbiontes encontradas en las esponjas pueden cultivarse, dejando un gran vacío del noventa y nueve por ciento.
Según Sipkema, su laboratorio puede cultivar actualmente alrededor de un diez por ciento.

El objetivo principal de su trabajo actual es cultivar el noventa por ciento que queda.

Direct Download: MdlM73 (.mp3 | 6.5 megs | 7 min.)

La traducción al español ha sido una gentileza de la Sociedad Española de Microbiología, www.semicro.es.

Mundo de los Microbios - Episodio 72

Unable to embed Rapid1Pixelout audio player. Please double check that:  1)You have the latest version of Adobe Flash Player.  2)This web page does not have any fatal Javascript errors.  3)The audio-player.js file of Rapid1Pixelout has been included.

A continuación: Bacterias que hibernan, el tracto gastrointestinal infantil como ecosistema microbiano, y parásitos y comunidades de plantas.

Bacterias que hibernan

Lo mismo que los osos buscan una cueva donde hibernarse, algunas bacterias pueden escapar de la muerte convirtiéndose en formas durmientes. Todd Steck, biólogo de la Universidad de Carolina Norte en Charlotte, afirma que esto podría explicar por qué las infecciones del tracto urinario, o ITU, tienen una tasa de recurrencia tan alta.

Steck dice que las ITU persistentes son un problema usual. Se calcula que el veinte y cinco por ciento de las mujeres que tienen una infección del tracto urinario padecerá otra en los seis meses siguientes.

Aunque los antibióticos deberían matar los microbios originales, la misma cepa puede producir muchas recurrencias. Esto es, mientras la mayoría de las células mueren, algunas, según Steck, pueden haber encontrado una manera de persistir. Entran en un estado biológico conocido como “viable pero no cultivable”.

El estado de célula viable no cultivable, comenta Steck, se produce en respuesta a los antibióticos. En dicha situación las bacterias no pueden ser detectadas utilizando técnicas de cultivo convencionales - pero aún siguen vivas.

Los síntomas pueden desaparecer durante meses o años pero las células en hibernación logran revivir y causan un nuevo episodio de la enfermedad. Para analizar esto Steck y sus colegas trataron las células de u n Escherichia coli que causa ITU con dos antibióticos. Descubrieron que la mayoría morían pero que unas pocas células continuaban viables semanas después.

Todavía no está claro cómo se provoca el estado durmiente o la resucitación, y tampoco existe tratamiento aún. Pero Steck afirma que están aumentando los descubrimientos de bacterias infecciosas capaces de hibernar.

El tracto gastrointestinal infantil como ecosistema microbiano

El intestino humano está repleto de microorganismos. Millones de bacterias, virus y otros microbios, llamados arqueas, viven en nuestro intestino y nos ayudan a digerir los alimentos, sintetizan vitaminas que necesitamos para sobrevivir e incluso nos protegen de los microbios dañinos.

Pero Joanne Lasrado, investigador postdoctoral en la Universidad de Purdue, explica que el intestino de un bebé recién nacido es una tábula rasa – un ambiente totalmente estéril hasta que los primeros microbios pioneros logran entrar inmediatamente después del parto, o incluso durante el mismo.
Lasrado ha estudiado la presencia de diferentes tipos de microbios en el intestino de los bebés, justo después del nacimiento y más tarde. Ella dice que nadie ha investigado antes si en el intestino de los niños existen arqueas; pero sus estudios han demostrado que los pequeños, al igual que los adultos, sí las tienen. Las arqueas van y vienen, aparentemente al azar, y Lasrado opina que los niños las adquieren de su ambiente, a través de la leche materna, el alimento o en las guarderías. Teóricamente pueden venir de cualquier lugar.

Lasrado afirma que las bacterias y arqueas que viven en nuestros intestinos tienen un gran impacto en la salud humana; por ello el entendimiento de cómo se produce la primera colonización de los niños podría usa rse para promover una mejor salud durante el resto de una vida.

Parásitos y comunidades de plantas

No se necesita ir muy lejos para encontrar un ecosistema que haya sido dominado por especies de plantas no nativas. Esas áreas parecen prosperar con vida vegetal pero en muchas localizaciones las plantas invasoras han eliminado las nativas y han disminuido la capacidad para albergar la vida silvestre del hábitat.

Bitty Roy, profesora de la Universidad de Oregón en Eugene, está trabajando para devolver las comunidades de plantas a su estado original en un humedal en Oregón, restaurando la flora nativa. Pero esto no es tan simple como plantar todo un campo con un sólo tipo de planta nativa.

Según Roy, uno de los mayores principios de la biología de las enfermedades es que cuando se ha reducido la diversidad y las altas densidades, es muy fácil que los parásitos se difundan.

En otras palabras, las enfermedades se dispersan de planta en planta fácilmente cuando sólo abundan unas pocas especies. En este caso, más es mejor.

Roy hace hincapié en que la diversidad de las plantas es muy importante, y que las comunidades más diversas sufren menos enfermedades.

Según ella, si usted esta plantando para restaurar una zona y tiene que decidir entre usar 10 ó 20 especies, utilice 20 porque tendrá menos enfermedades en su nueva comunidad.

Direct Download: MdlM72 (.mp3 | 5.5 megs | 6 min.)

La traducción al español ha sido una gentileza de la Sociedad Española de Microbiología, www.semicro.es.

Mundo de los Microbios - Episodio 71

Unable to embed Rapid1Pixelout audio player. Please double check that:  1)You have the latest version of Adobe Flash Player.  2)This web page does not have any fatal Javascript errors.  3)The audio-player.js file of Rapid1Pixelout has been included.

A continuación: el etanol y la intolerancia a la lactosa, el efecto de la sal y Helicobacter pylori, el MRSA en la frontera, y la bioaumentación del petróleo flotante.

El etanol y la intolerancia a la lactosa

Cuando una empresa fermenta una inmensa cantidad de maíz para fabricar etanol como combustible pueden producirse grandes pérdidas económicas a causa de un simple problema.

Ken Bischoff, microbiólogo del Departamento de Agricultura de los Estados Unidos, afirma que cuando las bacterias del ácido láctico invaden un tanque de fermentación de maíz hay que solucionar el problema inmediatamente.

Según Bischoff, el proceso suele acarrear costosos cierres y procedimientos de limpieza. Por ello a varias plantas industriales les gustaría controlar la contaminación usando antibióticos.

Bischoff afirma que la penicilina y la virginiamicina, los antibióticos que más se emplean para librar los tanques de fermentación de las bacterias del ácido láctico, han provocado la selección de cepas resistentes y por ello ya no son tan potentes como antes.

Ha estudiado la eficacia de otro antibiótico llamado monensina. Nos cuenta que éste resulta activo contra las bacterias del ácido láctico y que incluso destruye las bacterias resistentes a la pen

icilina y a la virginiamicina. En el futuro, afirma, la monensina podría usarse para que la producción de etanol tuviera lugar sin riesgo de contaminación por las bacterias del ácido láctico, y sin pega de

ningún tipo.

El efecto de la sal y Helicobacter pylori

Puede que la bacteria Helicobacter pylori no sea la más conocida pero es una de las más prevalentes en la población humana.

Han Gancz, un investigador postdoctoral de la Universidad de las Fuerzas Armadas de Ciencias de la Salud, asegura que aproximadamente el 50% de los individuos de todo el mundo tiene esta bacteria en su interior. Sin embargo la tasa de enfermedad es muy baja: un uno por ciento, aunque este porcentaje, en términos absolutos, es un número enorme pues se refiere al uno por ciento de la población mundial.

Gancs afirma que este desafortunado uno por ciento tiene un alto riesgo de úlceras y de cáncer gástrico. Y que esto puede estar relacionado con el consumo de una dieta rica en sal.

Según él, se produce un efecto sinérgico. Si usted toma una dieta rica en sal, y al mismo tiempo está infectado por H. pylori, tiene mayor probabilidad de padecer cáncer gástrico.


En el laboratorio, Gancz y sus colegas observaron que en esta bacteria se activan ciertos genes cuando se encuentra expuesta a grandes cantidades de sal. Los investigadores creen que esos genes pueden ser responsables de las enfermedades del estómago. Y ésa puede ser una razón más para no tomar esa bolsa extragrande de patatas fritas.

El MRSA en la frontera

El Staphylococcus aureus resistente a la meticilina, o MRSA, constituye una amenaza creciente en los Estados Unidos. El Director de la carrera de Farmacia en la Universidad de Texas en Austin, José Rivera, se preguntaba si el MRSA u otras enfermedades se intercambiaban a través de la frontera entre Estados Unidos y México.

Rivera nos cuenta que Staphylococcus aureus fue el que más le sorprendió en términos de la incidencia de la resistencia porque ésta era mucho más alta en El Paso, Texas, que en Juárez, México.

La tasa en El Paso era de un cuarenta y cuatro por ciento, frente a sólo el siete por ciento en Juárez. Ésos no eran los resultados que él esperaba puesto que creía que el fácil acceso a los antibióticos que existe en México haría que allí fueran mayores los porcentajes de resistencia. Pero ahora cree que la resistencia a los antibióticos puede ser menor en México porque los compuestos más potentes no se pueden adquirir con tanta facilidad como en los Estados Unidos. Rivera cree que este hallazgo preliminar ha despertado un gran interés pero que hay que investigar más para aclarar todas las cuestiones.

Subraya que se necesitan más datos epidemiológicos y del uso de los antibióticos para comprender el esquema total.

La bioaumentación del petróleo flotante

Salvaguardar la tierra de los derrames de petróleo mar adentro es una carrera contra reloj, similar a lo sucedido en el derrame Deepwater Horizon en el golfo de México. Una nueva herramienta, usando bacterias secuestradoras de hidrocarburos en combinación con compuestos químicos comunes, podría ayudar a que los equipos de limpieza consiguieran hacer un trabajo más rápido en los océanos, lagos y ríos.

Los derrames de petróleo tienen lugar casi semanalmente en las aguas abiertas de todo el mundo. Una moderna estrategia para empapar este desastre antropogénico es usar conjuntamente bacterias y compuestos químicos para dar dos golpes simultáneos que descompusieran el petróleo en elementos no perjudiciales.

David Elmendorf, profesor de la Universidad de Oklahoma, dice que la idea consiste en incluir juntos en una bolita biodegradable flotante un compuesto de fósforo y nitrógeno, del tipo usado en los fertilizantes del césped, y una bacteria degradadora de hidrocarburos.

El proceso, llamado bioaumentación, usa bolitas de nitrógeno-fósforo que actúan como revitalizante para las bacterias hambrientas de petróleo. Los microbios están en las bolitas. Cuando las bacterias se disuelven en el agua junto a los nutrientes químicos proliferan y transforman el petróleo crudo en dióxido de carbono, agua y biomasa celular inofensiva.

Funciona en el laboratorio. La siguiente etapa es probar la bioaumentación en la naturaleza.

Direct Download: MdlM71 (.mp3 | 6.5 megs | 7 min.)

La traducción al español ha sido una gentileza de la Sociedad Española de Microbiología, www.semicro.es.

Mundo de los Microbios - Episodio 70

Unable to embed Rapid1Pixelout audio player. Please double check that:  1)You have the latest version of Adobe Flash Player.  2)This web page does not have any fatal Javascript errors.  3)The audio-player.js file of Rapid1Pixelout has been included.

A continuación: Las bacterias y la terapia para el Alzheimer, etnia y tuberculosis, los microbios y sus ambientes, y el estímulo de la respuesta inmune a los tumores.

Las bacterias y la terapia para el Alzheimer

Las bacterias producen de forma rutinaria amiloides, el mismo tipo de acumulación de proteínas fibrosas insolubles que en las células humanas puede conducir a enfermedades neurodegenerativas. Curiosamente las bacterias producen amiloides para su propia supervivencia y esta estrategia puede ofrecer un enfoque nuevo y sorprendente para el tratamiento del Alzheimer.

Los amiloides son fibras proteicas con formas anormales que se depositan dentro o fuera de una célula viva. Son signos indicadores de enfermedades tales como el Alzheimer o el Parkinson. La terapia actual contra el Alzheimer va dirigida a ralentizar la formación de las fibras. Pero puede ser que las fibras en sí no sean tanto la causa de la enfermedad como las toxinas que se producen cuando estas fibras se están formando.

Si esto es así, un nuevo estudio en la bacteria Escherichia coli, que produce amiloides para su propio beneficio, nos ofrece una nueva percepción del tema.

El microbiólogo de la Universidad de Michigan, Matthew Chapman, piensa que las bacterias nos están diciendo que no hay que ralentizar la formación de fibras sino, al contrario, acelerarla.

Su equipo descubrió que las bacterias controlan eficazmente la formación de fibras y producen rápidamente amiloides funcionales. Tan rápidamente que se saltan las etapas donde las potenciales toxinas se producen. Imitando el eficiente mecanismo de control de las bacterias, los científicos podrían diseñar compuestos terapéuticos que sean capaces de controlar la expansión de las fibras amiloides en humanos, así como de las toxinas destructivas a que dan lugar.

Etnia y tuberculosis

Incluso las enfermedades tienen familias. El bacilo de la tuberculosis, por ejemplo, se agrupa en familias, según el perfil que tiene su genoma. James Douglas es un profesor de la Universidad de Hawai. Ha rastreado los árboles genealógicos de estas familias con la esperanza de identificar cómo se transmite la tuberculosis dentro de un grupo de personas y entre grupos diferentes.                                                                      

Usando una gigante base de datos de ADN, Douglas y sus colaboradores encontraron algo extraño en tres familias diferentes del bacilo de la tuberculosis. Las cepas de las familias llamadas pekinesa, manileña y americana eran las únicas que se localizaban exclusivamente en una región geográfica- a saber, China, las Filipinas o los Estados Unidos. Y lo que sorprendió aún más a Douglas fue a quien afectaba la enfermedad.

Douglas dice que estas familias de la tuberculosis parecen estar asociadas a grupos étnicos. Según Douglas, no se sabe si esto es debido a una distribución geográfica o si es una verdadera distribución étnica. El plan consiste en seguir investigando en áreas donde las distintas cepas convivan para ver si afectan a grupos étnicos diferentes.

Douglas cree que, si este es el caso, los Estados Unidos tendrán que esforzarse en controlar la tuberculosis en otros países, no sólo aquí en casa, para proteger a sus propios ciudadanos, que son de diverso origen.

Los microbios y sus ambientes

Los científicos están descubriendo ahora que los ecosistemas compuestos de microorganismos siguen muchas de las reglas de los ecosistemas poblados por formas de vida de mayor tamaño.

Shahid Naeem, profesora de la Universidad de Columbia, dice que si eliminamos especies de plantas o animales de ecosistemas tales como los bosques, las lagunas y las praderas, disminuye su salud. Un ecosistema con pocas especies de animales y plantas tiene menos capacidad para recuperarse después de un incendio, una inundación o cualquier otra alteración.

Según ella se han hecho estudios con microorganismos que también sugieren que esto es cierto. Si se pierde diversidad de microorganismos, dice Naeem, comienzan a ser menos previsibles las funciones que realizan en la naturaleza. Los microorganismos empiezan a actuar de forma perjudicial para la salud del ecosistema.

Como explica Naeem, las comunidades de microorganismos pueden parecer caóticas pero los científicos están comenzando a reconocer patrones en los ecosistemas microbianos, y la comprensión de estos patrones puede conducir a una mejor predicción de cómo los microorganismos que son importantes para la salud humana y la industria se comportarán.

El estímulo de la respuesta inmune a los tumores.

Un nuevo estudio dice que las bacterias beneficiosas que viven en nuestro intestino juegan un papel importante en la depleción de los linfomas, un poderoso tratamiento contra el cáncer.

Para comenzar la depleción de un linfoma, en primer lugar los médicos extraen unas células inmunes, llamadas células T, a partir del tumor del paciente y las cultivan en el laboratorio. Una vez que se han producido un gran número de células, debilitan el sistema inmune del paciente y seguidamente introducen de nuevo las células en el cuerpo.

Nicholas Restifo, un director de investigación del Instituto Nacional del Cáncer, dice que los médicos conocían que el tratamiento funcionaba. Pero no sabían porqué. Para descubrirlo Restifo y su equipo debilitaron el sistema inmune de ratones y encontraron que se dañaba la mucosa de sus intestinos, lo que permitía que las bacterias intestinales pasaran a la sangre.

Restifo señala que estas bacterias son aliadas de nuestro organismo, ayudándonos a digerir el alimento para que sea metabolizado. Pero cuando estas bacterias entran en el torrente sanguíneo, el sistema inmune pasa a un estado de máxima alerta y activa las células T antitumorales.

Las bacterias estimulan el sistema inmune y, aunque ésta es una respuesta a una infección no relacionada, las nuevas células T implantadas atacan el tumor. Restifo espera que este hallazgo pueda ayudar a los investigadores a lanzar ataques aún más potentes contra el cáncer.

Direct Download: MdlM70 (.mp3 | 6.5 megs | 7 min.)

La traducción al español ha sido una gentileza de la Sociedad Española de Microbiología, www.semicro.es.

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use