Subscribe to Meet the Scientist

...with iTunes:

iTunes

...with web-based podcatchers:

add2netvibes

addtomyyahoo4

...with something else:

feed-icon-12x12-orange View RSS Feed

Get more info on other podcatchers:

badge_juice


Meet the Scientist

MTS15 - Kathryn Boor - The Science of Foodborne Pathogens

boor

Dr. Kathryn Boor is a professor and chair in the Food Science department at Cornell University, where she’s director of the Food Safety Laboratory - a biosecurity level 2 laboratory that facilitates research on foodborne pathogens.  Her particular research interests lie in the “how” and “why” of pathogens and spoilage microbes in food.  Boor is also the director of the Milk Quality Improvement Program – a program funded by New York state to monitor and make recommendations to improve the quality of milk in the state.

When I think about the complicated way dairy products come to be on the shelf in my grocery store – farmers use machinery to extract milk from an animal that lives in a barn or a field; the milk is piped through long tubes to a tank on a truck that conveys the product to a plant that processes and divvies it up; the bottles and packages are put on another truck and carted to the store – it seems like a wonder dairy is ever safe to eat.  But dairy is safe: CDC data indicate that less than 1% of foodborne illness outbreaks in the U.S. involve dairy products1 2 .

Dr. Boor’s primary interest lies in Listeria monocytogenes, one of the few pathogens that is a problem in dairy, and most people who’ve heard of it associate it with unpasteurized soft cheese or cold cuts.  Listeriosis is not as common or familiar as some other foodborne illnesses, but it is more often fatal than salmonellosis or botulism, and in a pregnant woman even a mild case can be deadly for her fetus.  Dr. Boor’s research focuses on how this so-called “simple” organism is able to persist in some foods and overcome the stress of refrigeration and stomach acid to not only survive, but to make us really sick.

In this interview, I asked Dr. Boor about how she came to this particular niche in science, whether pasteurization is any better than keeping milk from getting contaminated in the first place, and what her trained eye for food safety looks out for when she’s buying food.

1 U.S. Dept. of Health and Human Services, Public Health Service and Food and Drug Admin.  2003.  Grade “A” Pasteurized Milk Ordinance.  2003 Revision.

2 Data are available at the Centers for Disease Control and Prevention’s website: http://www.cdc.gov/foodborneoutbreaks/outbreak_data.htm

Direct download: MTS15

MTS14 - Moselio Schaechter - Successful Science Blogging and Hunting Mushrooms

Moselio Schaechter

Moselio Schaechter – known as Elio to his friends – is Distinguished Professor of Molecular Biology and Microbiology, Emeritus, at the Tufts University School of Medicine, and he’s currently an adjunct professor at San Diego State University and at the University of California at San Diego. Dr. Schaechter has had a long career in bacteriology and has authored or co-authored a number of text books, and is a former president of the American Society for Microbiology. He lives in sunny San Diego now, where he lectures, attends meetings, and writes his blog, “Small Things Considered”.

If you want an example of the ways the internet has changed public discourse, look to the blogs - you’re reading one now, after all, and how many blogs did you read 10 years ago? Blogs give authors a bullhorn free from profit-driven publishers, provide people with ideas, and even build communities through reader discourse. To be sure, not every blog is interesting or even readable, but there are many bloggers out there working hard and stimulating some profound discussions.

Those of us interested in the life microscopic are lucky to have Dr. Schaechter, who muses on the topics of interest to him and acts as host to other eminent scientists who write guest essays. With Small Things Considered, his goal is to express his own interest in various subjects while encouraging interest in others and kindling conversation and debate.

In my interview with Dr. Schaechter, we talk about what he gets out of being a blogger, what makes for a successful blog, and about how mushroom hunting in xeric Southern California usually involves a lot of hunting and few mushrooms.

Blogs and Websites mentioned in this episode include:

 

Direct download: MTS14

 

MTS13 - Joel Sussman - Proteopedia.org and Intrinsically Unstructured Proteins

joel sussman

Joel Sussman, Ph.D. is a professor of structural biology at the Weizmann Institute of Science in Israel. In his research, Dr. Sussman is interested in elucidating the structures and functions of proteins, particularly those involved in the nervous system. He is also the lead scientist behind Proteopedia – a new online protein structure encyclopedia.

Scientific endeavors have historically been a one-way street: an investigator or lab makes a discovery, then delivers the good news to the rest of the community via publication. Nowadays, computers and the internet are enabling easier and more seamless means of collaboration and communication. Proteopedia, with which Dr. Sussman is greatly involved, automatically gathers and compiles information from multiple curated sources of information, but its more revolutionary side is the wiki tool, which enables registered users to contribute information themselves.

In this interview with Dr. Sussman, I talked with him about his work with acetylcholinesterase and “intrinsically unstructured proteins” and about Proteopedia – how it works and about the possibility of misinformation making its way onto the site.

The video below shows Proteopedia in action. It is narrated by Eran Hodis, the graduate student, who, together with Professors Jaime Prilusky & Joel L. Sussman developed Proteopedia at the Weizmann Institute of Science.

Direct download: MTS13

MTS12 - Nancy Keller - Aspergillus and the Fungal Toxin Problem

keller

Nancy Keller is a Professor of Bacteriology and Medical Microbiology and Immunology at the University of Wisconsin-Madison. A mycologist, Dr. Keller works with a genus of fungi called Aspergillus – many of which are potent plant and human pathogens that produce deadly mycotoxins. Her research focuses on finding those aspects of Aspergillus species that make them effective as pathogens and toxin factories.

Tiny fungi cause big problems for agriculture and human health, and the U.S. alone spends millions of dollars every year to fight the fungi that attack crops. Aspergillus fungi, in particular, cause a problem for crop plants themselves, but the bigger concern is the mycotoxins they produce: aflatoxin is one of the most potent naturally-occurring toxins ever discovered. What’s more, aflatoxin and other Aspergillus toxins are carcinogenic. The bottom line? Exposure to large amounts of these fungal toxins can kill you quickly, and exposure to small amounts can kill you slowly.

On this episode, I talk with Dr. Keller about her work with Aspergillus, why we don’t even know how big the fungal toxin problem is, how reproduction and toxin-making are linked in these fungi, and how we may eventually use viruses as weapons against pathogenic fungi.

Direct download: MTS12

MTS11 - Daniel Lew - The Yeast Cell Cycle

daniellew2

Daniel Lew is a professor of Pharmacology and Cancer Biology and of Genetics at the Duke University Medical Center in Durham, North Carolina.  His research program focuses on cell cycle control in yeast, and how the cell cycle interacts with cell polarity.

Yeast cells may look simple, but inside every little single-cell package lurks an intricate creature that senses and responds cunningly to its surroundings.  Dr. Lew has uncovered many of the secrets of the tiny yeast, and since yeast bear a striking resemblance to human cells, some of these facts could help us eventually conquer our own problems with the cell cycle, including cancer – a kind of cell division gone wild.

In this interview, I talk with Dr. Lew about how a yeast cell knows when to say “when” during budding, why he studies yeast at a medical school, and where his hard-to-discern accent really comes from (hint: it’s not a North Carolina accent).

Direct download: MTS11

MTS10 - Anthony Maurelli - Black Holes and Antivirulence Genes

maurelli2007

Tony Maurelli is a professor of microbiology and immunology in the F. Edward Hébert School of Medicine at the Uniformed Services University of the Health Sciences in Bethesda, Maryland.  Dr. Maurelli’s major research interest lies in the genetics of bacterial pathogenesis – the genetic nuts and bolts of how bacteria infect humans and make us sick.

Dr. Maurelli’s work has uncovered “antivirulence genes” in Shigella flexneri, a major cause of dysentery and food borne illness.  This is an interesting concept: antivirulence genes undermine pathogenicity, so they must be broken or dropped from the genome for a bacterium to take good advantage of a host and cause disease.  These genes are a hindrance, so to become an effective pathogen, Shigella must stop using them.

In this interview, I talked with Dr. Maurelli about antivirulence genes, about whether the naming system for bacteria should be fixed, and about his favorite bacteria.

Direct download: MTS10

MTS009 - Stanley Falkow - 21st Century Microbe Hunter

falkow_w

Stanley Falkow is a professor of Microbiology & Immunology at the Stanford School of Medicine. His research interests lie in bacterial pathogenesis – how bacteria cause infection and disease – and over the course of his career he has contributed fundamental discoveries to the field. Falkow received the Lasker prize this year for special achievement in medical science, and the Lasker Foundation calls him “one of the great microbe hunters of all time”.

Molecular techniques (methods of analysis that rely on bacterial DNA) are now widely used for infectious disease diagnosis, thanks in large part to Falkow, who was among the first to apply an understanding of genes and virulence determinants to analyzing patient samples. He has published extensively in areas ranging from antibiotic resistance to food borne illness to microarrays. It is really difficult to compose interview questions for a scientist whose career has been as far-reaching and profoundly significant as Stan Falkow’s. Luckily for me, Dr. Falkow is a gracious conversationalist.

In this interview, I talked with Dr. Falkow about his prescient concerns about the dangers of using antibiotics as growth promoters in livestock, why Salmonella is so good at making you sick, and why students who are interested in science should follow their passion.

Direct download: MTS9

MTS008 - Rachel Whitaker - The Evolution of Sulfolobus

whitakerRachel Whitaker is an assistant professor of microbiology at the University of Illinois at Urbana-Champaign, where she has developed a research program focused on the evolutionary ecology of microorganisms. Much of Dr. Whitaker’s work centers around a hyperthermophile found in geothermal springs: the archaeon Sulfolobus islandicus.

Evolution is not just history – it’s still in action today, molding humans, plants, animals and, of course, microbes, in ways we still don’t completely understand. One of Whitaker’s focus areas is archaea, a group of single-celled microbes that are found in some of the harshest environments on earth. By looking at how one variety of archaea, Sulfolobus, varies from place to place, Whitaker hopes to find whether Sulfolobus is adapting new characteristics to suit its habitats, and whether this kind of adaptation can help us explain why there are so many different kinds of microbes in the world.

In this interview, I asked Dr. Whitaker about the hot springs where she studies Sulfolobus, whether it’s hard to communicate with ecologists who work with bigger organisms, and about new discoveries she’s made related to an immune system in archaea.

Direct download: MTS8

whitakerpic3resized

MTS007 - Anthony Fauci - Managing Infectious Disease on a Global Scale

fauci

Dr. Anthony Fauci is the director of NIAID – the National Institutes for Allergy and Infectious Disease – where he is also Chief of the Laboratory of Immunoregulation. Dr. Fauci’s research interests lie primarily in the molecular mechanisms of HIV and AIDS, and he has published extensively on the interactions of HIV with the immune system. He’ll be speaking at the opening session of ICAAC – the Interscience Conference on Antimicrobial Agents and Chemotherapy – on October 25 in Washington DC, where he’ll describe some of the remaining challenges in the fight against HIV, tuberculosis, and antibiotic resistant microbes.

Dr. Fauci is not only a researcher, he is also an important player in science policy in the U.S. He was a primary architect of PEPFAR, the President’s Emergency Plan for AIDS Relief, a program that received reauthorization and has a budget of $48 billion for HIV/AIDS, tuberculosis, and malaria around the world. In honor of his efforts to improve our understanding and treatment of HIV and AIDS, Dr. Fauci was recently awarded the Presidential Medal of Freedom, the nation’s highest civil award.

In this interview, I talked with Dr. Fauci about progress in managing infectious disease on a global scale, why it’s the “devil you don’t know” that is still the scariest infectious disease of all, and about the roles of abstinence education and condom awareness in PEPFAR.

Direct download: MTS7

MTS006 - Bruce Rittmann - Microbes, Waste and Renewable Energy

Bruce Rittmann

Bruce Rittmann, the Director of the Center for Environmental Biotechnology at the Biodesign Institute of Arizona State, focuses his efforts on reclaiming contaminated water and producing renewable energy using microbes.

He was elected to the National Academy of Engineering in 2004 and credited with pioneering development of biofilm fundamentals and contributing to their widespread use in the bioremediation of contaminated ecosystems. His research combines many disciplines of science, including engineering, microbiology, biochemistry, geochemistry and microbial ecology. Formerly with Northwestern University, Rittmann is also a leader in the development of the Membrane Biofilm Reactor, an approach that uses bacteria to destroy pollutants in water. The Membrane Biofilm Reactor is especially effective for removing perchlorate from drinking water, and it is being launched commercially.

mbr1

In this podcast, I talk with Dr. Rittmann about the biofilm reactor process, the electricity hiding in our wastewater, and how we may some day grow fuel on the roofs of buildings.

Direct download: MTS6

MTS005 - Brett Finlay - E.coli and the Human Gut

Brett Finlay

Brett Finlay is a professor in the Michael Smith Laboratories, and the Departments of Biochemistry and Molecular Biology, and Microbiology and Immunology at the University of British Columbia.

His research program focuses on E. coli, how it interacts with the cells of the human gut, and mouse models of E. coli-like infections.  Dr. Finlay will speak at the conference on Beneficial Microbes in San Diego this October, where he’ll describe the results of some of his latest research, which examines how E. coli infections effect the microbes that live in our guts.

Sadly, outbreaks of Escherichia coli infections in this country are common – just this summer a huge E. coli outbreak in Oklahoma sickened nearly 300 people and sent 67 of them to the hospital.  Clearly, in an outbreak, not everyone is effected equally.  When lots of people are exposed to E. coli, why do some of those people walk away unharmed while others wind up in the I.C.U.?  Dr. Finlay would say part of the answer, at least, probably lies in which microbes live in our intestine.

In this podcast, I talked with Dr. Finlay about why we have so many different kinds of microbes in our guts, what happens to them when E. coli strikes, and why we have a long way to go before probiotics offer help – and not just hope.

Direct download: MTS5

MTS004 - David Relman - The Human Microbiome

David Relman

David Relman is a Professor of Medicine and of Microbiology & Immunology at Stanford University, and his research program focuses on the human microbiome – the microbial communities of bacteria, viruses, and other organisms that thrive on and in the human body. He’ll be speaking at ASM’s conference on Beneficial Microbes in San Diego this October, where he’ll talk about our personal microbial ecosystems, how far we’ve come in research and how far we have to go.

Since Louis Pasteur first deduced that microbes are to blame for infectious disease, doctors and scientists alike have mostly seen infection as warfare between a pathogen and the human body. Dr. Relman sees things a little differently. To him, the complex communities of microbes that line our skin, mouths, intestines, and other orifices (ahem) are also involved in this battle, interacting with pathogens and with our bodies, and these interactions help determine how a fracas plays out.

In this interview, I asked Dr. Relman about our personal ecosystems of microbes, whether we’ll ever be able to understand and predict what these communities do, and about the sometimes distressing effects of oral antibiotics on our guts. We also talked about whether being MTV’s Rock Doctor back in the 1990’s had an impact on his other professional pursuits.

Direct download: MTS4

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use