MicrobeWorld App

appsquarebannerad200x200

ASM Fellowships

Fellowship

Microbes After Hours

Watter-Supply-200x200-Banner

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

Orchestrating change: Protein signaling between soybean root hairs, bacteria reveals core cellular processes

Understanding what happens to a soybean root hair system infected by symbiotic, nitrogen-fixing soil bacteria, Bradyrhizobium japonicum, could go a long way toward using this symbiosis to redesign plants and improve crop yields, benefitting both food and biofuel production. Because of their extensive genomes, it is especially difficult to use conventional proteomic technologies to get meaningful information from plants. With the availability of a complete soybean genome, soybean root hairs represent an excellent model for the study of single-cell systems biology. Legume root hairs primarily are involved in water and nutrient uptake from the soil but also are the dominant infection site of symbiotic rhizobia. This infected area forms a novel organ—the nodule—where bacteria fix nitrogen for the host, acting as built-in fertilizer. At EMSL, scientists, as part of an onging collaboration with the Stacey Laboratory, employed the ultra-sensitive liquid chromatography-Fourier transform mass spectroscopy platform to characterize the soybean root hair proteome and determine root hair cellular signaling cascade responses to rhizobial colonization and infection.

Click "source" to read more.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use