MicrobeWorld App

appsquarebannerad200x200

Join MicrobeWorld

Subscribe via Email

subscribe

Microbes After Hours

MW-Site-Banner-200x200

Click for more "Microbes After Hours" videos

Featured Image

Featured Video

Crowdsourced Microbes Heading to Station

Supporters

ASM House 200X200

Biofuel Research Boosted by Discovery of How Cyanobacteria Make Energy

Image
A generally accepted, 44-year-old assumption about how certain kinds of bacteria make energy and synthesize cell materials has been shown to be incorrect by a team of scientists led by Donald Bryant, the Ernest C. Pollard Professor of Biotechnology at Penn State and a research professor in the Department of Chemistry and Biochemistry at Montana State University. The research, which will be published in the journal Science on Dec. 16, is expected to help scientists discover new ways of genetically engineering bacteria to manufacture biofuels -- energy-rich compounds derived from biological sources. Many textbooks, which cite the 44-year-old interpretation as fact, likely will be revised as a result of the new discovery.

Bryant explained that, in 1967, two groups of researchers concluded that an important energy-making cycle was incomplete in cyanobacteria -- photosynthetic bacteria formerly known as blue-green algae. This energy-producing cycle -- known as the tricarboxylic acid (TCA) cycle or the Krebs cycle -- includes a series of chemical reactions that are used for metabolism by most forms of life, including bacteria, molds, protozoa and animals. This series of chemical reactions eventually leads to the production of ATP -- molecules responsible for providing energy for cell metabolism.

"During studies 44 years ago, researchers concluded that cyanobacteria were missing an essential enzyme of the metabolic pathway that is found in most other life forms," Bryant explained. "They concluded that cyanobacteria lacked the ability to make one enzyme, called 2-oxoglutarate dehydrogenase, and that this missing enzyme rendered the bacteria unable to produce a compound -- called succinyl-coenzyme A -- for the next step in the TCA cycle. The absence of this reaction was assumed to render the organisms unable to oxidize metabolites for energy production, although they could still use the remaining TCA-cycle reactions to produce substrates for biosynthetic reactions. As it turns out, the researchers just weren't looking hard enough, so there was more work to be done."
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use