MicrobeWorld App

appsquarebannerad200x200

Join MicrobeWorld

Subscribe via Email

subscribe

Microbes After Hours

MW-Site-Banner-200x200

Click for more "Microbes After Hours" videos

Featured Image

Featured Video

Crowdsourced Microbes Heading to Station

Supporters

ASM House 200X200

Self-propelled microrockets detect dangerous bacteria in food, clinical and environmental samples

No matter if you are into big, fat hamburgers or eat entirely vegetarian, nibbling on spinach leaves and celery stalks, some food borne pathogens will sooner or later get you. The Centers for Disease Control and Prevention (CDC) estimates that in the United States alone, food borne pathogens cause approximately 76 million illnesses, 325,000 hospitalizations, and 5,000 deaths. If that is not scary enough for you, take a look at the U.S. Food and Drug Administration's Bad Bug Book that lists food borne pathogenic microorganisms and natural toxins.

Early detection of food borne pathogenic bacteria is critical to prevent disease outbreaks and preserve public health. This has led to urgent demands to develop highly efficient strategies for isolating and detecting this microorganism in connection to food safety, medical diagnostics, water quality, and counter-terrorism.

E. coli and other pathogenic bacteria are commonly detected using traditional culture techniques, microscopy, luminescence, enzyme-linked immunosorbent assay (ELISA), biochemical tests and/or the polymerase chain reaction (PCR). These techniques, however, are time-consuming, labor-intensive, and inadequate as they lack the ability to detect bacteria in real time. Thus, there is an urgent need for alternative platforms for the rapid, sensitive, reliable and simple isolation and detection of E. coli and other pathogens.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use