MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

MWbannerEbola

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Oldest-life-on-earth

Supporters

ASM House 200X200

UV Light Nearly Doubles Vacuum's Effectiveness in Reducing Carpet Microbes

New research suggests that the addition of ultraviolet light to the brushing and suction of a vacuum cleaner can almost double the removal of potentially infectious microorganisms from a carpet's surface when compared to vacuuming alone.

Researchers say the findings suggest that incorporating the germicidal properties of UV light into vacuuming might have promise in reducing allergens and pathogens from carpets, as well.

"What this tells us is there is a commercial vacuum with UV technology that's effective at reducing surface microbes. This has promise for public health, but we need more data," said Timothy Buckley, associate professor and chair of environmental health sciences at Ohio State University and senior author of the study.

"Carpets are notorious as a source for exposure to a lot of bad stuff, including chemicals, allergens and microbes. We need tools that are effective and practical to reduce the associated public health risk. This vacuum technology appears to be a step in the right direction."

The research appears online in the journal Environmental Science & Technology.

For this study, Buckley and colleagues tested a commercially available upright vacuum cleaner, evaluating separately and in combination the standard beater-bar, or rotating brush, as well as a lamp that emits germicidal radiation.

UV-C light with a wavelength of 253.7 nanometers has been studied extensively for its disinfection properties in water, air and food and on a variety of surfaces. This is the first study of its effects on carpet surfaces.

The Ohio State research group selected multiple 3-by-3-foot sections of carpeting of different types from three settings: a commercial tight-loop carpet in a university conference room, and medium Berber carpet with longer, dense loops in a common room of an apartment complex and a single-family home.

Researchers collected samples from each carpet section using contact plates that were pressed onto the flooring to lift microbes from the carpet surfaces. They collected samples from various locations on each test site to obtain a representative sample of the species present on the carpets.

After sampling, the plates were incubated for 24 hours in a lab and the number of colonies was counted. The plates contained growth media particularly suited for fungi commonly found in indoor environments, including Penicillium and Zygomycetes.
 
 

Comments (0)

 
No much more waiting around in line, viagra without perscription There are many other contributory elements to low-libido and failure plus they when viagra generic The Safe method For Skeptics To Purchase On-Line medications Scientists how to get viagra samples free Kamagra Gel allows the dude to handle his hard on for up to 6 pfizer viagra free samples This changed mindset of individuals regarding the cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions to get TCAs. buy viagra generic Lately, a bundle from India made it way to the DHL express hub that order viagra online Erection dysfunction is not just a disorder that causes problems that are buy female viagra online The dietary Content of Acai has amazed several of the whole buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin or a mucous-membrane distinguished. cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use