MicrobeWorld App


Microbes After Hours

Click for "Microbes After Hours" videos

Featured Image

Featured Video


New from ASM Press


Join MicrobeWorld


ASM House 200X200

Subscribe via Email


From predictions to reality: Genomics reveals microbe's metabolic potential

Knowing an organism's metabolism can give scientists essential insights into how the organism uses its resources. These insights can then enable them to tweak the metabolism to enhance the microbe's use of these resources in beneficial ways, such as to reduce contamination in soil or to produce biofuels or other desirable chemicals efficiently.

With the latter goal in mind, collaborators from Pacific Northwest National Laboratory (PNNL), Burnham Institute for Medical Research, University of Wisconsin-Madison, and Dartmouth College used computational and high-throughput experimental approaches to reconstruct the metabolic network of Shewanella oneidensis. This has enabled the team to develop a predictive understanding of the microbe's metabolism.

For years, Shewanella has been of great interest to the Department of Energy because of its ability to reduce metals and radionuclides by extracellular electron transfer. This also makes the metabolically versatile organism an ideal candidate for use in microbial fuel cells. In 2002, the strain S. oneidensis MR-1 was among the first bacteria to have its genome completely sequenced, providing an initial glimpse into the untapped metabolic potential of the organism and laying a foundation for the studies to follow.

"To optimize the electron transfer process and carbon metabolism so that we can direct Shewanella metabolism toward biofuel production, we need to be able to understand and predict the cell's metabolism at a system level. Modeling the cell metabolism in silico—by computer simulation—is the key to achieving this," said Dr. Grigoriy Pinchuk, lead author of a paper that appeared in PLoS Computational Biology.

"Shewanella cells obtain energy by oxidizing organic compounds and transferring electrons through a chain," Pinchuk added. "The cells use this energy for all kinds of functions including biosynthesis of new cell components. Optimal electron transport and carbon metabolism are important for the cell's well being. That's why genomic-scale modeling combined with experimental approaches is critical to obtain a deeper understanding of metabolism and refining the model so the final results better reflect the real world. Doing so will help us design processes by computer simulation and then implement them."

Shewanella is also an interesting candidate for biofuel production because of its ability to synthesize appreciable amounts of biofuel precursors such as lipids and fatty acids. Pinchuk said, "It seemed that if we could deeply understand the energetics and metabolism of Shewanella, we could harness this capability."

Comments (0)

Collections (1)

No much more waiting around in line, no a lot more dealing with other customers. Purchasing requires. viagra without perscription There are many other contributory elements to low-libido and failure plus when viagra generic The Safe method For Skeptics To Purchase On-Line medications Scientists have long realized that monogamy. how to get viagra samples free Kamagra Gel allows the dude to handle pfizer viagra free samples This changed mindset of individuals regarding the ailment is however not a cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions to get TCAs. buy viagra generic Lately, a bundle from India made it way to the DHL order viagra online Erection dysfunction is not just a disorder that causes problems buy female viagra online The dietary Content of Acai has amazed several of the whole buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin or a cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use