MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

MWbannerEbola

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

Switch That Enables Salmonella to Sabotage Host Cells Revealed

A new switch that enables Salmonella bacteria to sabotage host cells is revealed in a study published in the journal Science.

The researchers behind the study, from Imperial College London, say that the new finding could ultimately lead to drugs that interfere with the switch in order to combat Salmonella and possibly other bacterial infections.

In humans, Salmonella causes diseases ranging from gastroenteritis to typhoid fever. It also causes similar diseases in livestock.

Before the Salmonella cell can replicate inside a much larger human or animal cell and establish an infection, it must first sabotage the cell by injecting it with a cocktail of 'virulence' proteins. These proteins interfere with the cell's defences and help the bacteria to grow.

The new research reveals that a switch needs to be triggered before the bacterial cell can inject its virulence proteins into a host cell.

First, the bacterial cell assembles a needle-like structure on its surface, to deliver the virulence proteins. Then, another set of bacterial proteins pass through the needle and poke a hole in the membrane of the host cell, creating a bridge between the bacterial cell and the host. During this time, the switch inside the bacterial cell acts like a safety catch, holding the virulence proteins back so they are not delivered prematurely.

Once the hole is created, the bacterial cell recognises the pH of the host cell and this switches off the safety catch. This then allows the virulence proteins to be delivered through the hole into the host cell.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use