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The factors driving β-diversity (variation in community composi-
tion) yield insights into the maintenance of biodiversity on the
planet. Here we tested whether the mechanisms that underlie
bacterial β-diversity vary over centimeters to continental spatial
scales by comparing the composition of ammonia-oxidizing bacte-
ria communities in salt marsh sediments. As observed in studies
of macroorganisms, the drivers of salt marsh bacterial β-diversity
depend on spatial scale. In contrast to macroorganism studies,
however, we found no evidence of evolutionary diversification
of ammonia-oxidizing bacteria taxa at the continental scale, de-
spite an overall relationship between geographic distance and
community similarity. Our data are consistent with the idea that
dispersal limitation at local scales can contribute to β-diversity,
even though the 16S rRNA genes of the relatively common taxa
are globally distributed. These results highlight the importance
of considering multiple spatial scales for understanding microbial
biogeography.
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Biodiversity supports the ecosystem processes upon which so-
ciety depends (1). Understanding the mechanisms that gen-

erate andmaintain biodiversity is thus key to predicting ecosystem
responses to future environmental changes. The decrease in
community similarity with geographic distance is a universal
biogeographic pattern observed in communities from all
domains of life (as in refs. 2–4). Pinpointing the underlying
causes of this “distance-decay” pattern continues to be an area of
intense research (5–9), as such studies of β-diversity (variation in
community composition) yield insights into the maintenance of
biodiversity. These studies are still relatively rare for micro-
organisms, however, and thus our understanding of the mecha-
nisms underlying microbial diversity—most of the tree of life—
remains limited.
β-Diversity, and therefore distance-decay patterns, could be

driven solely by differences in environmental conditions across
space, a hypothesis summed up by microbiologists as, “every-
thing is everywhere—the environmental selects” (10). Under this
model, a distance-decay curve is observed because environmen-
tal variables tend to be spatially autocorrelated, and organisms
with differing niche preferences are selected from the available
pool of taxa as the environment changes with distance.
Dispersal limitation can also give rise to β-diversity, as it per-

mits historical contingencies to influence present-day biogeo-
graphic patterns. For example, neutral niche models, in which an
organism’s abundance is not influenced by its environmental
preferences, predict a distance-decay curve (8, 11). On relatively
short time scales, stochastic births and deaths contribute to
a heterogeneous distribution of taxa (ecological drift). On longer
time scales, stochastic genetic processes allow for taxon di-
versification across the landscape (evolutionary drift). If dispersal
is limiting, then current environmental or biotic conditions will
not fully explain the distance-decay curve, and thus geographic
distance will be correlated with community similarity even after
controlling for other factors (2).
For macroorganisms, the relative contribution of environ-

mental factors or dispersal limitation to β-diversity depends on

spatial scale (12). Fifty-years ago, Preston (13) noted that the
turnover rate (rate of change) of bird species composition across
space within a continent is lower than that across continents. He
attributed the high turnover rate across continents to evolu-
tionary diversification (i.e., speciation) between faunas as a result
of dispersal limitation and the lower turnover rates of bird spe-
cies within continents as a result of environmental variation.
Here we investigate whether the mechanisms underlying β-

diversity in bacteria also vary by spatial scale. We chose to focus
on the ammonia-oxidizing bacteria (AOB), which along with the
ammonia-oxidizing archaea (14), perform the rate-limiting step of
nitrification and thus play a key role in nitrogen dynamics. We
compared AOB community composition in 106 sediment samples
from 12 salt marshes on three continents. A partially nested
sampling design achieved a relatively balanced distribution of
pairwise distance classes over nine orders of magnitude, from
3 cm to 12,500 km (Fig. 1 and Table S1). We limited our sam-
pling to a monophyletic group of bacteria, the AOB within the
β-Proteobacteria, and one habitat, salt marshes primarily domi-
nated by cordgrass (Spartina spp.). This approach constrained
the pool of total diversity (richness) and kept the environmental
and plant variation relatively constant, increasing our ability to
identify if dispersal limitation influences AOB composition.
We then asked two questions: (i) Does bacterial β-diversity—

specifically, the slope of the distance-decay curve—vary over
local (within marsh), regional (across marshes within a coast),
and continental scales? (ii) Do the underlying factors (environ-
mental variation or dispersal limitation) explaining this diversity
vary by spatial scale? Because most bacteria are small, abundant,
and hardy, we predicted that dispersal limitation would occur
primarily across continents, resulting in genetically divergent
microbial “provinces” (15). At the same time, we predicted that
environmental factors would contribute equally to distance-
decay at all scales, resulting in the steepest slope at the continental
scale as reported in plant and animal communities (12, 13, 16).

Results and Discussion
We characterized AOB community composition by cloning and
Sanger sequencing of 16S rRNA gene regions targeted by two
primer sets. Here we focus on the results from a subset of those
sequences from the order Nitrosomonadales, generated using
primers specific for AOB within the β-Proteobacteria class (17).
The second primer set (18) generated longer sequences from
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a broader range of Proteobacteria, but yielded similar results
(Fig. S1 and Tables S2 and S3).
Across all samples, we identified 4,931 quality Nitrosomadales

sequences, which grouped into 176 OTUs (operational taxo-
nomic units) using an arbitrary 99% sequence similarity cutoff.
This cutoff retained a high amount of sequence diversity, but
minimized the chance of including diversity because of se-
quencing or PCR errors. Most (95%) of the sequences appear
closely related either to the marine Nitrosospira-like clade,
known to be abundant in estuarine sediments (e.g., ref. 19) or to
marine bacterium C-17, classified as Nitrosomonas (20) (Fig. S2).
Pairwise community similarity between the samples was calcu-
lated based on the presence or absence of each OTU using
a rarefied Sørensen’s index (4). Community similarity using this
incidence index was highly correlated with the abundance-based
Sørensen index (Mantel test: ρ = 0.9239; P = 0.0001) (21).
A plot of community similarity versus geographic distance for

each pairwise set of samples revealed that the Nitrosomonadales
display a significant, negative distance-decay curve (slope = −0.08,
P < 0.0001) (Fig. 2). Furthermore, the slope of this curve varied
significantly among the three spatial scales. The distance-decay
slope within marshes was significantly shallower than the overall
slope (slope=−0.04;P< 0.0334) and steeper acrossmarsheswithin
a region than the overall slope (slope= −0.27, P < 0.0007) (Fig. 2).
In contrast, at the continental scale, the distance-decay curve did
not differ from zero (P = 0.0953). Thus, there is no evidence that
sampling across continents contributed Nitromonadales OTU di-
versity in addition to what was already observed at the marsh and
regional scales. Furthermore, additional analyses suggest that these
results are not driven by a few outlier samples (Fig. S3).
Over all spatial scales, both the environment and dispersal lim-

itation appear to influence Nitrosomonadales β-diversity. Ranked
partial Mantel tests revealed that the similarity in Nitrosomo-
nadales community composition between samples was highly cor-
related with environmental distance (ρ=−0.5339; P=0.0001) and
geographic distance (ρ = −0.2803; P = 0.0001), but not plant
community similarity (P = 0.72) (Table S2).
To further identify the relative importance of factors con-

tributing to these correlations, we used a multiple regression on
matrices (MRM). The partial regression coefficients of an MRM
model give a measure of the rate of change in community sim-
ilarity per standardized unit of similarity for the variable of in-
terest; all other explanatory variables are held constant (22).
Over all scales, the MRMmodel explained a large and significant
proportion (R2 = 46%; P < 0.0001) of the variability in Nitro-

somonadales community similarity. Geographic distance con-
tributed the largest partial regression coefficient (b = 0.40,
P < 0.0001), with sediment moisture, nitrate concentration, plant
cover, salinity, and air and water temperature contributing to
smaller, but significant, partial regression coefficients (b = 0.09–
0.17, P < 0.05) (Table 1). Because salt marsh bacteria may be
dispersing through ocean currents, we also used a global ocean
circulation model (23), as applied previously (24), to estimate
relative dispersal times of hypothetical microbial cells between
each sampling location. Dispersal times between sampling points
did not explain more variability in bacterial community similarity
(ln dispersal time: b= 0.06, P= −0.0799; with dispersal R2 = 0.47
vs. without 0.46). Therefore, in the remaining analyses we use
geographic distance rather than dispersal time.
As hypothesized, the relative importance of environmental

factors versus geographic distance to Nitrosomadales community
similarity differed across the three spatial scales. Contrary to our
expectations, however, geographic distance had a strong effect
on community similarity within salt marshes (partial regression
coefficient b = 0.47) but no effect at larger scales (Table 1).
Furthermore, the relative importance of different environmental
variables varied by scale. Sediment moisture, which is likely re-
lated to unmeasured variables, such as oxygen availability, was
the most important variable explaining community similarity
within marshes (b = 0.63). In contrast, water temperature (b =
0.45) and nitrate concentrations (b = 0.17) were more important
at the regional and continental scales, respectively.
The varying importance of the environmental parameters at

different spatial scales likely reflects differences in their un-
derlying variability at these scales. For example, the MRMmodel
did exceptionally well in explaining variation in Nitrosomadales
community similarity at the regional scale (R2 = 0.61) (Table 1).
Notably, this spatial scale captures a latitudinal gradient on the
east and west coasts of North America, which results in high
variability in water temperature. Previous studies in the field and
laboratory support the idea that AOB composition is particularly
sensitive to temperature (e.g., refs. 25 and 26). Within marshes,

Fig. 1. The 13 marshes sampled (see Table S1 for details). Marshes com-
pared with one another within regions are circled. (Inset) The arrangement
of sampling points within marshes. Six points were sampled along a 100-m
transect, and a seventh point was sampled ∼1 km away. Two marshes in the
Northeast United States (outlined stars) were sampled more intensively,
along four 100-m transects in a grid pattern.

Fig. 2. Distance-decay curves for the Nitrosomadales communities. The
dashed, blue line denotes the least-squares linear regression across all spatial
scales. The solid lines denote separate regressions within each of the three
spatial scales: within marshes, regional (across marshes within regions circled in
Fig. 1), and continental (across regions). The slopes of all lines (except the solid
light blue line) are significantly less than zero. The slopes of the solid red lines
are significantly different from the slope of the all scale (blue dashed) line.

Martiny et al. PNAS | May 10, 2011 | vol. 108 | no. 19 | 7851

EC
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1016308108/-/DCSupplemental/pnas.201016308SI.pdf?targetid=nameddest=ST1


we found that the percentage of plant cover surrounding each
sampling point was important (Table 1), and we hypothesize that
this metric could represent differences in sediment surface tem-
peratures because of plant shading.
Why is geographic distance related to Nitrosomonadales com-

munity similarity only within marshes? We can think of two non-
exclusive explanations for this pattern. First, we may have missed
a spatially autocorrelated abiotic or biotic factor that strongly
influences AOB composition (e.g., other microbial groups that in-
teract with AOB). Indeed, the parameters that wemeasured do not
explain all of the variability in bacterial community similarity
(the unexplained variance is 73% within marshes). To explain our
results, the missing parameter would have to be spatially auto-
correlated within marshes, but not across marshes, as geographic
distance is not related to composition at the larger scales. Although
salt marshes are known for steep environmental gradients across
relatively small spatial scales (27), we tried to reduce the environ-
mental variation between marshes by selecting for similar plant
communities. Thus, it is possible, and perhaps likely, that an un-
measured variable contributes in part to a local distance effect,
though not being spatially autocorrelated across marshes.
Second, dispersal limitation may allow for ecological drift of

bacterial composition within a marsh. Stochastic births and
deaths, along with restricted movement of cells through marsh
sediments on ecological time scales, would create patchiness in
community composition simply because of parent and offspring
proximity (28). This spatial aggregation itself leads to a negative
relationship between community similarity and geographic dis-
tance (29). In addition, established biofilm assemblages on marsh
particles may inhibit subsequent colonization by cells in the
porewater, and these priority effects could further strengthen
these patterns (30). In larger organisms, ecological drift also
appears to contribute to distance-decay patterns (8). For exam-
ple, Tuomisto et al. (7) found that geographic distance, above
and beyond environmental effects, led to steep distance-decay
curves for tropical flora at distances less than 80 km. Thus, it
seems reasonable that at least some of the distance effect at the
local marsh scale may be because of ecological drift.
At the same time, we found no evidence that dispersal limi-

tation affects the β-diversity of Nitrosomadales across regions or
continents; geographic distance was not related to community
similarity at these spatial scales. The triangular spread of the
distance-decay relationship further supports this conclusion.
Although the average similarity between two samples tends to
decrease with larger distances, some samples 3,000 km apart
were as similar as those 70 km apart or from the same marsh.

Thus, the pool of AOB taxa, defined at 99% 16S rDNA sequence
similarity, appears to be globally distributed.
Although our study is not the first to report a relationship

between geographic distance and microbial community similarity
(e.g., refs. 6, 31, 32), it demonstrates that an overall relationship
between geographic distance and community similarity does not
necessarily indicate evolutionary divergent provinces. Rather, it
may be driven by ecological drift at local spatial scales. Indeed,
a number of studies focusing on smaller spatial scales have found
an effect of spatial distance on microbial community composi-
tion, where significant evolutionary drift among taxa is unlikely
(e.g., refs. 33–35).
Deeper sampling of AOB communities could yet reveal evo-

lutionary drift of 16S rRNA genes. A limitation of the study is
that it necessarily focuses on abundant taxa in the targeted
groups. Although overall distance-decay patterns are likely ro-
bust to this sampling bias (29), it is possible that the factors
underlying the β-diversity of rare AOB taxa differ from those of
more abundant taxa. For example, rarer taxa may be more sus-
ceptible to dispersal limitation, because the number of chances
for a propagule to travel a long distance and establish a new
population is reduced (15).
In conclusion, salt marsh bacteria may be dispersal limited,

even though the 16S rRNA genes of the relatively common taxa
may be everywhere. Our results are consistent with the idea that
dispersal limitation leads to ecological drift and may be one
mechanism that, in concert with measured and unmeasured en-
vironmental factors, drives Nitrosomonadales β-diversity at the
scale of an individual marsh. In contrast, only environmental
factors (and in the case of the broader Proteobacteria, plant
composition) (Table S3) appear to determine differences be-
tween communities across regional and continental scales. These
results do not eliminate the possibility that endemism occurs in
the AOB. To the contrary, evidence that these bacteria are dis-
persal limited at all indicates that evolutionary drift will likely be
observed in more rapidly evolving genomic markers; di-
versification should occur at spatial scales where the dispersal
rate among sites is lower than the mutation rate of the genomic
marker. As has been pointed out for larger organisms (36, 37),
both spatial and temporal scales—and their intertwined nature—
are key to investigating the distribution of microbial biodiversity.

Materials and Methods
Bacterial Community Composition. We sampled salt marsh sediments in the
summer of 2004 (16 June to 1 September in the northern hemisphere and 11
to 14 December in the southern hemisphere) (Fig. 1 and Table S1). Within

Table 1. Results of the multiple regression on matrices analysis by spatial scale

All scales Within marsh Regional Continental
R2 = 0.46 b R2 = 0.27 b R2 = 0.61 b R2 = 0.17 b

Ln (geographic distance) 0.40*** 0.47***
Ln (plant similarity + 0.005)
Ln (100 – % sediment moisture) 0.17** 0.63** 0.19* 0.14
Ln (ammonium +1)
Ln (nitrate +1) 0.10 0.17*
Ln (phosphate +1) 0.11
pH
% plant cover 0.13* 0.34*** n.s.
Salinity 0.10 0.16
Water temperature 0.09 na 0.45***
Air temperature 0.14** na 0.24* 0.16*

The variation (R2) of ln community distance (distance = 1 – similarity) that is explained by the remaining
variables and the partial regression coefficients (b) of the final model is reported (all values are significant at
P ≤ 0.0001, n = 62). If a partial regression coefficient is reported, its significance level (one-way tests) is < 0.0500.
*P ≤ 0.0100, **P ≤ 0.0010, and ***P ≤ 0.0001. Water and air temperature were measured for each marsh, and
therefore are not included in the within-marsh models.
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each marsh, we sampled seven points along a transect, with the points
ranging from 1 cm to 1 km apart (Fig. 1, Inset). Two marshes in the northeast
United States were sampled more intensively, along four ∼100-m transects
in a grid pattern. At each sampling point, a 1-cm diameter sediment core
was collected to a depth of 1 cm. The cores were stored on ice in the field,
frozen as soon as possible, and stored at −80 °C within 3 d. Community DNA
was extracted from the top 0.5 g of the sediment core using the FastDNA
spin kit for soils (Qbiogene, Inc.) following the manufacturer’s instructions.

We amplified the 16S rRNA gene using two primer sets. The BetaAmo
primers were designed to target AOB in the β-Proteobacteria division (18) but
are known to amplify many nontarget Proteobacterial sequences in salt
marsh sediments (4). The CTO primers were designed to be more specific for
β-AOBs but amplify a smaller region (of ∼465 bp) of the 16S rRNA gene and
require a nested-PCR following amplification with the BetaAmo primers
(17). Here we focus on the results from a subset of these CTO sequences. The
BetaAmo primers also yielded 5,340 quality sequences (of ∼1,170 bp) from
a broader range of Proteobacteria but yielded similar results (Fig. S1 and
Tables S2 and S3).

Each PCR was performed in triplicate on a 1:10 dilution of the genomic
DNA. For the nested PCR, each triplicate from the first PCR was amplified
separately for the second round, then combined before cloning. The primer
sequences and PCR conditions are reported in Table S4. Pooled amplicons
were cloned into Escherichia coli using the TOPO-TA cloning kit for se-
quencing (Invitrogen). Four microliters of PCR product, 1 μL of vector, and
1 μL of salt were combined, and the manufacturer’s protocol followed for
the remaining steps. For each sample, ∼96 clones were sequenced in both
directions by Sanger sequencing at the TIGR facility.

The sequences were trimmed, concatenated, and screened for the target
length using the Sequencher software. We first aligned the sequences in
batches using the GreenGenes webserver (http://greengenes.lbl.gov). We
imported these automated alignments into the ARB software (38), inserted
these sequences into the Silva Small Subunit rDNA database (39) using the
parsimony algorithm, and further curated the alignments manually. The
sequences are available from GenBank (HQ271472-HQ276885 and HQ276886-
HQ283075), and sequence alignments are available from the authors.

We used numerous procedures to remove chimeric sequences from our
data. First, the NAST alignment algorithm used by GreenGenes truncates
sequences that cannot be aligned well to any of its curated template
sequences. Next, we passed the GreenGenes aligned sequence batches
through three detection programs: Bellerophon (40), available through the
GreenGenes server, Mallard (41), and Chimera_Check v2.7 (42). We removed
any sequence that was indicated by at least two of these three algorithms as
a chimera.

To generate an OTU by sample matrix, we created a sequence distance
matrix using dnadist in the Phylip software package (43). We then assigned
each sequence to an OTU (defined as all sequences ≥ 99% similar) using the
cluster function (furthest-neighbor algorithm) in mothur (44).

To create amatrix of pairwise bacterial community similarity by sample, we
calculated a rarified similarity matrix (4). This approach controls for unequal
sampling (number of sequences) between samples, which influences the
number of shared OTUs observed. We calculated average similarity values
[Sørensen’s incidence- and abundance-based indices (21)] between all pair-
wise samples using a rarefied subset of drawn sequences (38 sequences for
the Nitrosomonadales and 39 for the Proteobacteria) over 10,000 random-
izations. Dataset S1 provides the community similarity matrix for the
Nitrosomonadales.

Environmental Variables and Plant Community Composition. After the sedi-
ment core was taken, plant composition and percent cover were assessed
within a 10 cm × 10 cm quadrat centered on the sampling point. Total
percentage of plant cover and the fraction of the plant species present in
the quadrat was estimated by eye. A similarity matrix for plant genera was
calculated using the Bray-Curtis index (45). We measured salinity of the
surface porewater with a handheld refractometer by extracting a few drops
of porewater with a syringe. Surface pH was measured with a handheld
meter pressed slightly (<1 mm deep) into the sediment.

To assess sediment nutrient availability, a 2.6-cm diameter sediment core
was collected to a depth of ∼2 cm immediately adjacent to the DNA sedi-
ment core using a 60-mL syringe with the tip cut off. The cores were stored
on ice in the field and frozen in the laboratory until analysis. After
defrosting, the sample was sifted through a 1-mm mesh to remove root
material. One gram of wet sediment was extracted in a solution of 2 M KCl
and 0.5 M NaH2CO3. Ammonium, nitrate, phosphate, and sulfate concen-
trations in the extracts were measured with Hach colorimetric kits, and
nutrient concentrations were standardized by the moisture content of the

sample. To normalize the values for statistical analyses, we applied a ln
transformation to sediment moisture content and a ln (x + 1) transformation
to the nutrient concentrations.

Geographic and Ocean Dispersal Distance. To create a geographic distance
matrix between each sampling point, we recorded the location and compass
direction of each sampling transect with a handheld GPS unit. We used the
GPS points, bearing angle, and sample spacing along each transect to cal-
culate the geographic distance between samples within each marsh. We
calculated distances between marshes using latitudinal and longitudinal
coordinates and the Haversine formula. Dataset S2 provides the geographic
distance matrix for the Nitrosomonadales.

To estimate the dispersal time of a hypothetical microbial cell between
each sampling location, we used a global ocean circulation model (23) as
applied previously in Martiny et al. (24). The model has an approximate
horizontal resolution of 3.75° × 3.75° and 29 depth layers. For each marsh,
we chose a starting point inside the nearest ocean grid cell at a depth of 5 m.
The model calculates the time in years when 10% of a tracer (“cells”) from
one starting point reaches the nearest ocean grid cell of the other marshes.
An ocean dispersal distance matrix was created, using these estimated dis-
persal times between each pairwise sample. Because the dispersal time from
site A to site B may not be equal to the dispersal time from site B to site A, we
took the average of the estimates in both directions. Samples within the same
marsh, or frommarshes with the same nearest ocean grid cell (e.g., Plum Island
and Wells Reserve, MA), were assigned a dispersal time of 0.001 y.

Statistical Analysis. The rate of distance-decay of the bacterial communities
was calculated as the slope of a linear least squares regression on the re-
lationship between (ln transformed) geographic distance versus (ln trans-
formed) bacterial similarity. Distance-decay curves are traditionally plotted
with at least community similarity log transformed (2), as this yields a better
linear fit than untransformed values. We chose to transform geographic
distance because of our sampling scheme, which purposely samples over
many orders of magnitude, otherwise the datapoints would have been
highly skewed. In cases where community similarity was zero and therefore
undefined on a log scale, we assigned community similarity to be equal to the
lowest nonzero similarity observed (to be conservative and not contribute
artificially to a negative slope). Because the datapoints (pairwise comparisons)
are nonindependent, we used a matrix permutation test to examine the sta-
tistical significance of the distance-decay slope. The samples, not the cells of
the matrix, were permuted 9,999 times, and the observed slope was compared
with the distribution of values in the permuted datasets (22).

We also tested whether the slopes of the distance-decay curve (least
squares) at the three a priori-defined spatial scales (1 cm to 5 km; 70 km to
1,350 km; 3,800 m to 12,500 km) were significantly different from zero or
different from the slope of the overall distance-decay curve. Again, we used
matrix permutations to compare the observed slopes within the three spatial
scales to the distribution of slopes observed in those ranges over 9,999
permutations.

To investigate the relationship between bacterial community similarity
and plant community similarity, geographic distance, and environmental
distance across all spatial scales, we first applied a ranked partial mantel test
(which assume a monotonic, but not linear, relationship) in the ecodist R
package (46, 47). For the environmental distance matrix, we created a com-
posite environmental distance matrix with a normalized combination of the
variables selected by the BEST procedure in PRIMER v6 (48).

To tease apart the relative importance of the environmental variables on
bacterial community similarity, we used a modified MRM approach (22).
Before applying MRM, we used variable clustering to assess the redundancy
of the environmental variables (49). Using the varclus procedure in the Hmisc
R package, the highest correlation was between sediment moisture content
(percent dryweight) and sulfate concentration (Spearman’s ρ2 = 0.69) (Fig.
S4). Water and air temperature were the next most correlated, with only ρ2 =
0.34. Therefore, we removed sulfate concentration from the MRM analyses,
but kept all other variables in the models. We modified the MRM script in
the ecodist R package (46, 47) and implemented a matrix randomization
procedure (22), standardization of the predictor variables, and one-tailed
tests (as we had a priori directional hypotheses). Geographic distance, ocean
dispersal distance, bacterial community distance (1-similarity) were ln
transformed, and plant community distance (1-similarity) was ln (x + 0.005)
transformed. To reduce the effect of spurious relationships between varia-
bles, we ran the MRM test, removed the nonsignificant variables, then reran
the tests again (49). We report the model results from this second run.

To further examine the relative importance of each predictor variable at
the three spatial scales, we investigated scale-specific MRM models. For ex-
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ample, within marshes, we calculated the partial regression coefficients, R2

value, and the F and pseudo t statistics (22) for only those pairwise com-
parisons between 1 cm and 5 km (includes comparisons between Port Susan
Bay and Skagit Bay marshes, which are < 5 km apart). To test the significance
of these values, we performed matrix permutations on the entire dataset—
all pairwise comparisons included—by permuting the bacterial similarity
matrix. After each of 9,999 permutations, we recalculated the MRM
parameters for only the within marsh comparisons. We compared the
original, observed parameters to the distribution of these permuted values
so as to calculate their statistical significance.
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