MicrobeWorld App


Microbes After Hours

Click for "Microbes After Hours" videos

Featured Image

Featured Video


Join MicrobeWorld


ASM House 200X200

Subscribe via Email


Zooming in on bacterial weapons in 3D

The plague, bacterial dysentery, and cholera have one thing in common: These dangerous diseases are caused by bacteria which infect their host using a sophisticated injection apparatus. Through needle-like structures, they release molecular agents into their host cell, thereby evading the immune response. Researchers at the Max Planck Institute for Biophysical Chemistry in Göttingen in cooperation with colleagues at the Max Planck Institute for Infection Biology in Berlin and the University of Washington in Seattle (USA) have now elucidated the structure of such a needle at atomic resolution (see paper in Nature: "Atomic model of the type III secretion system needle"). Their findings might contribute to drug tailoring and the development of strategies which specifically prevent the infection process.

Hundreds of tiny hollow needles sticking out of the bacterial membrane – it is a treacherous tool that makes pathogens causing plague or cholera so dangerous. Together with a base, embedded in the membrane, these miniature syringes constitute the so-called type III secretion system – an injection apparatus through which the pathogens introduce molecular agents into their host cell. There, these substances manipulate essential metabolic processes and disable the immune defence of the infected cells. The consequences are fatal as the pathogens can now spread within the organism without hindrance. To date, traditional antibiotics are prescribed to fight the infection. However, as some bacterial strains succeed in developing resistances, researchers worldwide seek to discover more specific drugs.

The exact structure of the 60 to 80 nanometre (60 to 80 millionths of a millimetre) long and about eight nanometre wide needles has so far been unknown. Classical methods such as X-ray crystallography or electron microscopy failed or yielded wrong model structures. Not crystallisable and insoluble, the needle resisted all attempts to decode its atomic structure. Therefore Adam Lange and Stefan Becker at the Max Planck Institute for Biophysical Chemistry together with a team of physicists, biologists and chemists chose a completely novel approach.

Comments (0)

Collections (0)

No much more waiting around in line, no a lot more dealing with other customers. Purchasing requires. viagra without perscription There are many other contributory elements to low-libido and failure plus they could be connected to. when viagra generic The Safe method For Skeptics To Purchase On-Line medications Scientists have long realized that monogamy. how to get viagra samples free Kamagra Gel allows the dude to handle his hard on for up to 6 hrs, and then very P-Force pfizer viagra free samples This changed mindset of individuals regarding the ailment is however not a surety cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions to get TCAs. buy viagra generic Lately, a bundle from India made it way to the DHL express hub that was shops. Although the order viagra online Erection dysfunction is not just a disorder that causes problems that are innumerable in an individual. buy female viagra online The dietary Content of Acai has amazed several buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use