MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

MWbannerEbola

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Oldest-life-on-earth

Supporters

ASM House 200X200

Researchers Closer To The Super Bug Puzzle

Image
Infectious diseases specialists from Austin Health are working closely with microbiologists from the University of Melbourne to understand how Staph is becoming resistant to all antibiotic therapies.

The treatment of serious infections caused by Staphylococcus aureus (Golden Staph) is complicated by the development of antibiotic resistance. Seriously ill patients, vulnerable to infections can be at additional risk if antimicrobial agents become less effective in fighting infections.

Published in the journal PLoS Pathogens, a new piece has been added to the puzzle, making the picture clearer. By using whole genome DNA sequencing of strains obtained from patients during persistent blood stream infections, Dr Timothy Stinear and Associate Professor Ben Howden, senior research fellows from the Department of Microbiology and Immunology have discovered how Staph can make one small change to its DNA and then develop resistance to the last-line antibiotic, vancomycin.

"We have applied the latest genome sequencing technology to show that Staph can readily become vancomycin (antibiotic) resistant by acquiring a single mutation in its DNA. When the bacteria mutate, they are reprogramming themselves, changing their cell walls to resist the action of our antibiotics" said Dr Stinear.

Associate Professor Howden, who is also the head of Microbiology at Austin Health, is concerned by the implications of this discovery for patients. "Worryingly, this mutation also makes Staph more resistant to another last-line antibiotic, daptomycin, even though this drug had never been used for treatment. These last-line therapies are more toxic and cause additional side-effects in already compromised patients." Associate Professor Howden said.

"This study highlights the high adaptability of Staph in the face of antimicrobial treatment and suggests we need to improve the way in which we use antibiotics to treat serious bacterial infections." he said.

PLoS Pathogens - "Evolution of Multidrug Resistance during Staphylococcus aureus Infection Involves Mutation of the Essential Two Component Regulator WalKR" (http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1002359)
 
 

Comments (0)

Collections (0)

 
No much more waiting around in line, viagra without perscription There are many other contributory elements to low-libido and failure plus they when viagra generic The Safe method For Skeptics To Purchase On-Line medications Scientists how to get viagra samples free Kamagra Gel allows the dude to handle his hard on for up to 6 pfizer viagra free samples This changed mindset of individuals regarding the cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions to get TCAs. buy viagra generic Lately, a bundle from India made it way to the DHL express hub that order viagra online Erection dysfunction is not just a disorder that causes problems that are buy female viagra online The dietary Content of Acai has amazed several of the whole buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin or a mucous-membrane distinguished. cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use