MicrobeWorld App

appsquarebannerad200x200

Join MicrobeWorld

Subscribe via Email

subscribe

Microbes After Hours

cheese-thumb-small

Click for more "Microbes After Hours" videos

Featured Image

Featured Video

Crowdsourced Microbes Heading to Station

Supporters

ASM House 200X200

Mimicking cells with transistors

Analog — rather than digital — circuits could enable models of biological systems that are more efficient, more accurate and easier to build.

As the world has become less analog and more digital — as tape decks and TV antennas have given way to MP3 players and streaming video — electrical engineers’ habits of thought have changed, too. In the analog world, they used to think mostly in terms of quantities such as voltage, which are continuous, meaning they can take on an infinite range of values. Now, they tend to think more in terms of 0s and 1s, the binary oppositions of digital logic.

Since the completion of the Human Genome Project, two thriving new disciplines — synthetic biology and systems biology — have emerged from the observation that in some ways, the sequences of chemical reactions that lead to protein production in cells are a lot like electronic circuits. In general, researchers in both fields tend to analyze reactions in terms of binary oppositions: If a chemical is present, one thing happens; if the chemical is absent, a different thing happens.

But Rahul Sarpeshkar, an associate professor of electrical engineering in MIT’s Research Laboratory of Electronics (RLE), thinks that’s the wrong approach. “The signals in cells are not ones or zeroes,” Sarpeshkar says. “That’s an overly simplified abstraction that is kind of a first, crude, useful approximation for what cells do. But everybody knows that’s really wrong.”

Click "source" for entire article.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use