MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

WaterSupplyYouTubeFrame

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

Biofilm Reorganization: Microcinematic Image Analysis Finds Existing Theories of Bacterial Self-Organization Are Lacking

In a surprising new study, researchers using image-analysis methods similar to those employed in facial-recognition software have made a startling discovery that rules out the two main theories scientists had created to explain how bacteria self-organize into multicellular aggregate mounds. The study by researchers from Rice University and the University of Georgia appears online this week in the Proceedings of the National Academy of Sciences.

The find is important for the study of biofilms -- slimy colonies of bacteria that form on everything from teeth to pacemakers. Federal health officials have estimated that as many as 80 percent of all microbial infections arise from biofilms, and scientists know that the same bacteria can be up to 1,000 times more resistant to antibiotics if they're living inside a biofilm rather than living on their own. To better fight biofilms, scientists have been scrambling to understand the biochemical and biophysical mechanisms that allow bacteria to form aggregates, reorganize and interact.

"The results of our analysis were really surprising," said study co-author Oleg Igoshin, assistant professor in bioengineering at Rice. "Our results didn't support either of the major competing theories people have come up with. Those theories were each predicated on the idea that as the bacterial mounds were forming and reorganizing, the individual bacterium were drawn toward one or another of them by some sort of chemical signal.

"That doesn't appear to be the case at all," Igoshin said. "We didn't find any neighbor-related factors between the groups at all. Instead, there seems to be a signaling mechanism within the group itself that trumps everything else."
The study involved the bacterium Myxococcus xanthus, a common soil bacteria that's often studied for its ability to self-organize into various patterns. In the wild, M. xanthus are content to collectively hunt other bacteria. But when food is scarce, they stream together into aggregates containing up to 100,000 cells and form spores. The resulting aggregate mounds are large enough to be carried away to better environs by the wind or passing insects.

To study this behavior in the lab, Igoshin and Rice co-authors postdoctoral fellow Chunyan Xie and graduate student Haiyang Zhang created a computer program that could analyze thousands of still frames from microcinematic movies of M. xanthus. The movies were created in the laboratory of University of Georgia collaborator and co-author Lawrence Shimkets. The movies showed how M. xanthus streamed together to form "aggregates." One hallmark of the M. xanthus streaming process is that less than half of the aggregates that initially form will survive through the end of the process. The factors that control this ripening are not understood.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use