MicrobeWorld App

appsquarebannerad200x200

ASM Fellowships

Fellowship

Microbes After Hours

WaterSupplyYouTubeFrame

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

Researchers Crack Code to Harmful Brown Tides

A team involving University of Tennessee, Knoxville, researchers has conducted the first-ever genetic sequencing of a harmful algal bloom (HAB) species, cracking the genome of the micro-organism responsible for the Eastern Seaboard’s notorious brown tides.
Click here to find out more!

Brown tides decimated the scallop industries of New York and New Jersey in the 1980s and 1990s and continue to plague the waters off North America and South Africa. The tides are not poisonous to humans, but the chronic blooms are toxic to marine life and block sunlight from reaching undersea vegetation, reducing the food available to fish and shellfish. Indeed, they have decimated sea grass beds and shellfisheries leading to billions of dollars in economic losses.

Steven Wilhelm, microbiology professor; Gary LeCleir, research associate in microbiology; Nathan VerBerkmoes, adjunct assistant professor of microbiology at UT Knoxville and Oak Ridge National Laboratory; and Manesh Shah, senior research associate at the School of Genome Science and Technology, in collaboration with other researchers were able to solve the mystery as to why HABs continue to bloom when there are so many other competing species in the water with them.

Their findings are published in the current online edition of the Proceedings of the National Academy of Sciences.

The researchers discovered that the algae’s unique genetic structure allows them to thrive in polluted ecosystems, providing clues to why certain species have experienced explosive growth in water around the globe in recent decades.

They found there are certain functions HABs can perform that other algae cannot. For instance, they are able to survive for long periods in no light. They are able to metabolize in organic matter and handle what would normally be toxic amounts of metals like copper. The HABs also have a larger number of selenoproteins, which use the trace element selenium to perform essential cell functions illustrating a concordance between the genome and the ecosystem where it’s blooming.

The takeaway is that the organism thrives in human-impacted conditions.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use