MicrobeWorld App


Microbes After Hours

Click for "Microbes After Hours" videos

Agar Art Contest 2016


Featured Image

Featured Video


Join MicrobeWorld


ASM House 200X200

Subscribe via Email


H1N1 Influenza Virus Used New Biochemical Trick to Cause Pandemic Read more: H1N1 Influenza Virus Used New Biochemical Trick to Cause Pandemic

Today, scientists announced the discovery of genetic changes that affect the spread of Influenza virus from one host to another. In a report in the current (Aug. 5, 2010) edition of Public Library of Science (PLoS) Pathogens, an international team of scientists - including members of the Seattle Structural Genomics Center for Infectious Disease (SSGCID) - sheds new light on the Influenza virus, showing that the recent pandemic-causing H1N1 flu virus used a new biochemical trick to spread efficiently in humans.

Led by Peter Myler, Ph.D., of Seattle Biomedical Research Institute (Seattle BioMed), the SSGCID brings together a consortium of Washington State-based organizations to provide a "blueprint" for the development of new drugs, vaccines and diagnostics for deadly infectious diseases, like the flu. Funded by a $30.6 million contract from the National Institute of Allergy and Infectious Diseases (NIAID), which is part of the National Institutes of Health (NIH), the Center uses state-of-the-art high-throughput technology to experimentally determine the three-dimensional structures of proteins from a number of bacterial, viral, fungal and protozoan pathogens. In addition to Seattle BioMed, the SSGCID members include Emerald BioStructures, the University of Washington and the Pacific Northwest National Laboratory (Battelle Memorial Institute).

Influenzavirus A, scientists well know, is a crafty pathogen constantly changing to evade host immune systems and jump from one species, like birds, to another, such as mammals. The H1N1 flu virus caused a worldwide epidemic in 2009 and 2010, sickening as many as 34 million Americans and causing up to an estimated 6,000 deaths in the United States.

The new work expands the repertoire of known factors flu viruses can use to hijack a host cell and amplify infection in mammals, including humans. The discovery not only yields new insight into the subtle biology of flu, but also reveals another genetic marker public health officials can use to predict pandemics.

Comments (0)

Collections (0)


American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use