MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

WaterSupplyYouTubeFrame

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

An sRNA controls a bacterium's social life

Image
For the first time, biologists have directly shown how spontaneous mutation of a small RNA (sRNA) regulatory molecule can provide an evolutionary advantage. Reporting in this week's Science, Indiana University Bloomington scientists also identify the sRNA as a key regulator of social behavior in Myxococcus xanthus, a soil bacterium widely studied for its ability to cooperatively construct fruiting bodies that house stress-resistant spores when food runs out.

"We'd been asking how one of our experimental lineages had re-evolved the ability to make fruiting bodies and ended up discovering a completely new aspect of Myxococcus biology," said IU Bloomington evolutionary biologist Gregory Velicer.

A genetic change in the sRNA of interest, 'Pxr', had been previously found to give an evolved mutant of M. xanthus a competitive edge over both the mutant's immediate parent, a social "cheater" that does not make fruiting bodies, and that cheater's own ancestor, a cooperative wild-type strain that does construct fruiting bodies. IU Bloomington molecular biologist Yuen-Tsu Nicco Yu and Velicer had been investigating how the mutation converted the socially inept parental cheater into a new strain with a restored capacity to make fruiting bodies.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use