MicrobeWorld App

appsquarebannerad200x200

ASM Fellowships

Fellowship

Microbes After Hours

WaterSupplyYouTubeFrame

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

Swirling and whirling: the movement of spherical bacteria

Image
Research on bacterial movement tends to focus on the rod-shaped bacteria. With the aid of small waving flagella, each bacterial cell can push itself in the direction it wishes to go. They can also move in groups, forming large swarms that ripple and slide their way across Petri dishes. Spherical cells had always been assumed to be relatively sessile, due to their non-streamlined shape, however recent research on the bacteria Serratia marcescens has show that it is capable of movement, even when the cells are spherical.

S. marcescens is normally a rod-shaped Gram negative bacteria while growing and developing. If grown in an overnight culture the cells become highly crowded and shrink slightly to form spheres (during the stationary phase). When placed in a single drop of culture these spherical cells were seen swimming upwards, to the top of the drop and away from the main bulk of bacterial cells. On the surface of the drop, the cells formed a monolayer and moved in dynamic whirls and jets as shown in the video below.

Click "source" to read more and view video.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use