MicrobeWorld App

appsquarebannerad200x200

Join MicrobeWorld

Subscribe via Email

subscribe

Microbes After Hours

shutdown

Click for more "Microbes After Hours" videos

Featured Image

Featured Video

Crowdsourced Microbes Heading to Station

Supporters

ASM House 200X200

Study Analyzes Dynamical Properties in Antibiotic Resistance Enzyme

Image
Global structural properties have changed across bacterial families without putting limits on new antibiotic resistance. Antibiotic-resistant bacteria have been emerging at an alarming rate. In some of the scariest of these pathogens, the mechanism responsible for the bacteria’s ability to defeat antibiotics is a complex protein molecule embedded in the bacterial cell wall -- the enzyme b-lactamase.

The rapid evolution of b-lactamase is the key factor responsible for the growing antibiotic resistance of some of the most terrifying pathogenic bacteria on the planet – bacteria which are becoming rapidly immune to most, if not all, of our drugs. We can trace the genetic changes responsible, but actually understanding what those changes are doing to the properties of the hugely complex molecule is another matter.

The enzyme and its antibiotic-destroying effects are not new. b-lactamase has evolved over the millennia as a defensive weapon, a molecular machine for chopping up chemical weapons deployed in the wars bacteria fight against each other – antibacterial weapons that we have since discovered and call “antibiotics.” Because this chemical warfare has gone on for billions of years, the protein can be found in subtle variants in many bacteria.

Click "source" to read more.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600

Copyright © American Center for Microbiology 2012. All Rights Reserved.