MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

MWbannerEbola

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

Protein improves efficacy of tumor-killing enzyme

Image
Researchers at NIAID have devised a method for delivering tumor cell-killing enzymes in a way that protects the enzyme until it can do its work inside the cell. In their study in mBio this week, researchers assembled microscopic protein packages that can deliver an enzyme called PEIII to the insides of cells. By attaching a protein called ubiquitin to the enzyme, they were able to protect the PEIII from degradation by the cell, allowing the PEIII to complete its mission of cell assassination. The results indicate that ubiquitin may be a useful addition to targeted toxins, therapies that specifically target and kill tumor cells.
Although researchers have been developing tumor-directed "targeted toxins" for decades, their success has been hindered by technical problems, including inadequate tumor specificity, low efficiency of delivery to the cytosol, and other issues. In their study in mBio, researchers from the National Institute of Allergy and Infectious Diseases (NIAID) sought to improve the persistence of the payload enzyme in the cytosol.
The targeted toxin assemblies they created included two components the researchers have used before in targeted toxins: the "killing" enzyme PEIII, and a set of targeting proteins called LFn that deliver the PEIII enzyme via pores to the inside of the cell. The LFn delivery system was engineered to specifically target and attach to tumor cells.
The third component in the bundle was a new addition: ubiquitin, a small protein that is normally used by cells to target waste proteins for degradation. The researchers inserted ubiquitin in between the LFn and the PEIII, then tested the bundle on mice with tumors. The idea was to use the cell's own ubiquitin-cleaving enzymes to cut the ubiquitin off and free up the PEIII enzyme once it's inside the cell.
The system worked, write the authors. Tumor growth was inhibited in mice treated with targeted toxins that either carried the wild-type ubiquitin or engineered ubiquitin without lysine residues in it, a change that should prevent it from being degraded by the cell. The addition of ubiquitin enhanced the ability of the PEIII enzyme to persist inside the cell, they write, thereby enhancing its potency. And the ubiquitin didn't seem to hinder the efficiency of delivering the PEIII inside the cell.
As an added bonus, the addition of ubiquitin reduced the toxicity of the targeted toxin to non-tumor tissues.
The authors point out that the use of ubiquitin linkers shows considerable promise and could be an effective strategy for enhancing the potency of tumor-targeting toxins for use in patients. In research currently underway, they are attempting to improve on the system by making changes to the ubiquitin that allow it to unfold appropriately inside the cell.
 
 

Comments (0)

Collections (0)

 

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use