MicrobeWorld App

appsquarebannerad200x200

Microbes After Hours

MWbannerEbola

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Oldest-life-on-earth

Supporters

ASM House 200X200

Why Sourdough Bread Resists Mold (Press Release)

Sourdough bread resists mold, unlike conventionally leavened bread. Now Michael Gaenzle and colleagues of the University of Alberta, Edmonton, show why. During sourdough production, bacteria convert the linoleic acid in bread flour to a compound that has powerful antifungal activity. The research, which could improve the taste of bread, is published online ahead of print in the jounal Applied and Environmental Microbiology.

The major benefits from the research are twofold: better tasting bread, says Gaenzle, because “preservatives can be eliminated from the recipes, and because sourdough bread has a more distinct and richer flavor compared to bread produced with yeast only;” and novel tools to control fungi in malting and plant production, via treatment of seeds with the anti-fungal fatty acids.

Genuine sourdough bread differs from ordinary bread in having an extra fermentation step, over and above yeast fermentation. This step is mediated by lactic acid bacteria, typically of the genus Lactobacillus, says Gaenzle.

In the study, “we offered linoleic acid to lactobacilli and screened for organisms producing potent antifungal activity,” says Gaenzle. The investigators then fractionated the metabolites to isolate and identify compounds with antifungal activity. “The identification was a bottleneck in the research project,” says Gaenzle. “In collaboration with analytical chemists, we had to develop novel methods for identifying the compounds.”

L. hammesii produced substantial quantities of hydroxylated monounsaturated fatty acids which the researchers found strongly inhibited mold formation. A second antifungal fatty acid produced by cereal enzymes contributes to the antifungal activity of sourdough.

“The two compounds and their formation by cereal or microbial enzymes had been described previously, but their antifungal activity and their generation in food production was unknown,” says Gaenzle. These new findings, he says, were “a step towards understanding how and why lactobacilli metabolize fatty acids. This could be useful in the long term to improve our understanding of the biology of these organisms.”

A copy of the manuscript can be found online at http://bit.ly/asmtip0213a. Formal publication of the article is scheduled for the second March 2013 issue of Applied and Environmental Microbiology.

(B.A. Black, E. Zannini, J.M. Curtis, and M.G. Gaenzle, 2013. Antifungal hydroxy fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol. Online ahead of print 11 January 2013. doi:10.1128/AEM.03784-12)
 
 

Comments (0)

Collections (0)

 
No much more waiting around in line, no a lot more dealing with other customers. Purchasing requires. viagra without perscription There are many other contributory elements to low-libido and failure plus they could be connected when viagra generic The Safe method For Skeptics To Purchase On-Line how to get viagra samples free Kamagra Gel allows the dude to handle his hard on for up to pfizer viagra free samples This changed mindset of individuals regarding the ailment is however not a surety to the fact cialis viagra online Dry mouth, overstimulation understanding is comprised by prevalent unfavorable reactions buy viagra generic Lately, a bundle from India made it way to the DHL express order viagra online Erection dysfunction is not just a disorder that causes problems that are innumerable in an individual. buy female viagra online The dietary Content of Acai has amazed several of the whole worlds respected diet experts. Besides being. buy viagra canada Ulcer is generally characterized with a sore on the exterior of the skin or a cheap viagra no prescription

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use