MicrobeWorld App

appsquarebannerad200x200

ASM Fellowships

Fellowship

Microbes After Hours

Watter-Supply-200x200-Banner

Click for more "Microbes After Hours" videos

Join MicrobeWorld

Subscribe via Email

subscribe

Featured Image

Featured Video

Ebola Virus explained

Supporters

ASM House 200X200

TWiM 60 Letters

Kelly writes:

I’m reeling from this episode!! The symbiosis, the web of life, the energies, chemicals, organisms of
evolutionary progression shaping our world naturally and by human intervention with unknown consequences, then you all tie it to the brain microbiome alterations affecting behavior! Yes!!!
A recent quote from a researcher says soon we’ll call our immune system the bacterial interaction system!
Yes! The microbes rule our world and us. God is bug. Oh the heresy!
This is what we see with inflammation therapy…bugs rule even if you can’t culture them with Koch’s postulates.
I have a Talmudic question:
If most alphaproteobacteria are phototrophic, and the brain doesn’t get sunshine, does vitamin D endocrine system dysregulation have an effect on their population in the brain?

Vitamin D hormone transcribes the AMPs to balance our bugs. https://chronicillnessrecovery.org/images/stories/How_Vitamin_D_Metabolism_Affects_Autoimmune_and_Inflammatory_Diseases2.pdf
Why we use olmesartan to correct vitamin D dysregulation.
Angiotensin and Systems Thinking: Wrapping Your Mind Around the Big Picture
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603174/

thank you!!
Kelly

[the following email was sent to TWiP but I think TWiM listeners will like it]

Joe writes:

Vince and Dickson,

Here is a follow up on your biofuels question. To make fuels from crops succeed we need a biotech breakthrough that I really thought someone would have done already. Basically we need a bug that eats cellulose and converts it back to sugar so you can ferment it. Personally, I think there is a Nobel Prize in it for the group that creates an e. coli strain that converts cellulose to sugars. Once you have that, then you can feed the farm animals the corn and run your tractor on the corn stalks! Or you could use hay or grass clips or wood chips or waste paper, whatever is available cheaply. Until we get that bug, ethanol from corn will just be a niche technology.

People will keep pushing to use corn crops or other high sugar crops to make fuel, but the economics are not good and the lost opportunity costs are too high. Look how the modest current efforts in the USA have pushed up food prices and still required government subsidies to be competitive. No doubt there is a listener out there with lots of arguments for how great ethanol from corn is but I don't see anything like the margin needed to make it a viable market changing crude oil substitute.

I will show my age and tell you that as a senior chemical engineering design project in 1980 at Purdue, we looked at how to convert crop waste materials (like corn stalks) into fuel and it wasn't pretty. The only real way to break down the cellulose was to grind it up and treat it with hot fuming sulfuric acid in big reactors. Fuming sulfuric is 98% concentrated acid that is saturated with sulfur trioxide gas, brute force chemistry for sure! As I remember, you could get pretty good conversion of the cellulose, but the ugly part was separating the good stuff from all the waste acid and the non reactive lignin. Once you got all the acid out of the good stuff, then you still had to ferment the sugars. It is not surprising that you don't see anybody running this process to make fuel! We need a biotech solution to break down the cellulose without all the mess. I think folks were looking at the microbes in termites' stomachs as a place to start., but I have not heard of any progress on this in several years.

I will add that biofuels are not the only option for our fuel supply. For the past 100 years, we have had repeated dramatic reports that we are about to run out of oil and yet it never seems to happen! I remember a particularly detailed one in Scientific American about 10-15 years ago with beautiful graphs and everything. Each time the trumpets of doom sound, some smart engineer or geologist comes up with a new way to extract more oil. I don't see any reason why this trend will suddenly stop this time, we still have lots of tar sands, deep oil, and shale oil that have not been touched. Please note that I am not expressing a political view on the social correctness of these options just the technical aspects. Even more impressive are the reported quantities of frozen methane hydrate clathrates on the ocean floor that would likely be fairly easy to extract. Some estimates are that there is more than 10 times the amount of energy stored there than in all the oil we have ever used. Obviously none of these fossil fuels address the CO2 generation concerns that many people have.

Wind, solar, hydro and even nuclear power all have their places and I hope their niches keep growing as the technology improves, but nothing comes close to competing with chemical energy as a cheap, portable, high density source of energy. One just needs to look at biology to see the truth of this; plants fix the suns energy into chemical forms that then cascade through the food chain ever evolving into more complex forms. How cool is that!

Thanks for helping me stretch my brain each week! Thus ends "This Week in Chemical Engineering"!

Warmest Regards,

Joe Griebstein
EH&S Manager, LSG

Robin writes:

How about phage fossils?

Now that we know that phages have an apparently symbiotic relationship with mammals, is it too farfetched to imagine that some phages were once incorporated into - and expressed - in metazoa?

One line of research might be a search for such fossil sequences in the genomic databases that already exist. Perhaps someone is already doing it?

The reference to salicylates in my last email was prompted by Dr. Schacter's comment that methyl salicylate reminded him of acetylsalicylic acid, and to show how the acetyl group was important in the clinical effects of the latter.

Thanks for such thought-provoking and paradigm-shifting discussions!

 

Comments (0)

Collections (0)

American Society for Microbiology
2012 1752 N Street, N.W. • Washington, DC 20036-2904 • (202) 737-3600
American Society For Microbiology © 2014   |   Privacy Policy   |   Terms of Use